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Foreword

The availability of affordable compute power enabled by Moore’s law has been enabling rapid advances

in Machine Learning solutions and driving adoption across diverse segments of the industry. The ability

to learn complex models underlying the real-world processes from observed (training) data through
systemic, easy-to-apply Machine Learning solution stacks has been of tremendous attraction to businesses
to harness meaningful business value. The appeal and opportunities of Machine Learning have resulted in
the availability of many resources—books, tutorials, online training, and courses for solution developers,
analysts, engineers, and scientists to learn the algorithms and implement platforms and methodologies. It
is not uncommon for someone just starting out to get overwhelmed by the abundance of the material. In
addition, not following a structured workflow might not yield consistent and relevant results with Machine
Learning solutions.

Key requirements for building robust Machine Learning applications and getting consistent, actionable
results involve investing significant time and effort in understanding the objectives and key value of
the project, establishing robust data pipelines, analyzing and visualizing data, and feature engineering,
selection, and modeling. The iterative nature of these projects involves several Select — Apply — Validate
— Tune cycles before coming up with a suitable Machine Learning-based model. A final and important
step is to integrate the solution (Machine Learning model) into existing (or new) organization systems
or business processes to sustain actionable and relevant results. Hence, the broad requirements of the
ingredients for a robust Machine Learning solution require a development platform that is suited not just
for interactive modeling of Machine Learning, but also excels in data ingestion, processing, visualization,
systems integration, and strong ecosystem support for runtime deployment and maintenance. Python is
an excellent choice of language because it fits the need of the hour with its multi-purpose capabilities, ease
of implementation and integration, active developer community, and ever-growing Machine Learning
ecosystem, leading to its adoption for Machine Learning growing rapidly.

The authors of this book have leveraged their hands-on experience with solving real-world problems
using Python and its Machine Learning ecosystem to help the readers gain the solid knowledge needed to
apply essential concepts, methodologies, tools, and techniques for solving their own real-world problems
and use-cases. Practical Machine Learning with Python aims to cater to readers with varying skill levels
ranging from beginners to experts and enable them in structuring and building practical Machine
Learning solutions.

—Ram R. Varra, Senior Principal Engineer, Intel
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Introduction

Data is the new oil and Machine Learning is a powerful concept and framework for making the best out of
it. In this age of automation and intelligent systems, it is hardly a surprise that Machine Learning and Data
Science are some of the top buzz words. The tremendous interest and renewed investments in the field of
Data Science across industries, enterprises, and domains are clear indicators of its enormous potential.
Intelligent systems and data-driven organizations are becoming a reality and the advancements in tools
and techniques is only helping it expand further. With data being of paramount importance, there has never
been a higher demand for Machine Learning and Data Science practitioners than there is now. Indeed,

the world is facing a shortage of data scientists. It's been coined “The sexiest job in the 21* Century” which
makes it all the more worthwhile to try to build some valuable expertise in this domain.

Practical Machine Learning with Python is a problem solver’s guide to building real-world intelligent
systems. It follows a comprehensive three-tiered approach packed with concepts, methodologies, hands-on
examples, and code. This book helps its readers master the essential skills needed to recognize and solve
complex problems with Machine Learning and Deep Learning by following a data-driven mindset. Using
real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your
perfect companion for learning the art and science of Machine Learning to become a successful practitioner.
The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to
think, design, build, and execute Machine Learning systems and projects successfully.

This book will get you started on the ways to leverage the Python Machine Learning ecosystem with its
diverse set of frameworks and libraries. The three-tiered approach of this book starts by focusing on building
a strong foundation around the basics of Machine Learning and relevant tools and frameworks, the next part
emphasizes the core processes around building Machine Learning pipelines, and the final part leverages this
knowledge on solving some real-world case studies from diverse domains, including retail, transportation,
movies, music, computer vision, art, and finance. We also cover a wide range of Machine Learning models,
including regression, classification, forecasting, rule-mining, and clustering. This book also touches on
cutting edge methodologies and research from the field of Deep Learning, including concepts like transfer
learning and case studies relevant to computer vision, including image classification and neural style
transfer. Each chapter consists of detailed concepts with complete hands-on examples, code, and detailed
discussions. The main intent of this book is to give a wide range of readers—including IT professionals,
analysts, developers, data scientists, engineers, and graduate students—a structured approach to gaining
essential skills pertaining to Machine Learning and enough knowledge about leveraging state-of-the-art
Machine Learning techniques and frameworks so that they can start solving their own real-world problems.
This book is application-focused, so it’s not a replacement for gaining deep conceptual and theoretical
knowledge about Machine Learning algorithms, methods, and their internal implementations. We strongly
recommend you supplement the practical knowledge gained through this book with some standard books
on data mining, statistical analysis, and theoretical aspects of Machine Learning algorithms and methods to
gain deeper insights into the world of Machine Learning.
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Learning




CHAPTER 1

Machine Learning Basics

The idea of making intelligent, sentient, and self-aware machines is not something that suddenly came into
existence in the last few years. In fact a lot of lore from Greek mythology talks about intelligent machines
and inventions having self-awareness and intelligence of their own. The origins and the evolution of the
computer have been really revolutionary over a period of several centuries, starting from the basic Abacus
and its descendant the slide rule in the 17th Century to the first general purpose computer designed by
Charles Babbage in the 1800s. In fact, once computers started evolving with the invention of the Analytical
Engine by Babbage and the first computer program, which was written by Ada Lovelace in 1842, people
started wondering and contemplating that could there be a time when computers or machines truly become
intelligent and start thinking for themselves. In fact, the renowned computer scientist, Alan Turing, was
highly influential in the development of theoretical computer science, algorithms, and formal language and
addressed concepts like artificial intelligence and Machine Learning as early as the 1950s. This brief insight
into the evolution of making machines learn is just to give you an idea of something that has been out there
since centuries but has recently started gaining a lot of attention and focus.

With faster computers, better processing, better computation power, and more storage, we have been
living in what I like to call, the “age of information” or the “age of data” Day in and day out, we deal with
managing Big Data and building intelligent systems by using concepts and methodologies from Data
Science, Artificial Intelligence, Data Mining, and Machine Learning. Of course, most of you must have heard
many of the terms I just mentioned and come across sayings like “data is the new 0il”. The main challenge
that businesses and organizations have embarked on in the last decade is to use approaches to try to make
sense of all the data that they have and use valuable information and insights from it in order to make better
decisions. Indeed with great advancements in technology, including availability of cheap and massive
computing, hardware (including GPUs) and storage, we have seen a thriving ecosystem built around
domains like Artificial Intelligence, Machine Learning, and most recently Deep Learning. Researchers,
developers, data scientists, and engineers are working continuously round the clock to research and build
tools, frameworks, algorithms, techniques, and methodologies to build intelligent models and systems that
can predict events, automate tasks, perform complex analyses, detect anomalies, self-heal failures, and even
understand and respond to human inputs.

This chapter follows a structured approach to cover various concepts, methodologies, and ideas
associated with Machine Learning. The core idea is to give you enough background on why we need
Machine Learning, the fundamental building blocks of Machine Learning, and what Machine Learning
offers us presently. This will enable you to learn about how best you can leverage Machine Learning to
get the maximum from your data. Since this is a book on practical Machine Learning, while we will be
focused on specific use cases, problems, and real-world case studies in subsequent chapters, it is extremely
important to understand formal definitions, concepts, and foundations with regard to learning algorithms,
data management, model building, evaluation, and deployment. Hence, we cover all these aspects,
including industry standards related to data mining and Machine Learning workflows, so that it gives you a
foundational framework that can be applied to approach and tackle any of the real-world problems we solve
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in subsequent chapters. Besides this, we also cover the different inter-disciplinary fields associated with
Machine Learning, which are in fact related fields all under the umbrella of artificial intelligence.

This book is more focused on applied or practical Machine Learning, hence the major focus in most
of the chapters will be the application of Machine Learning techniques and algorithms to solve real-world
problems. Hence some level of proficiency in basic mathematics, statistics, and Machine Learning would be
beneficial. However since this book takes into account the varying levels of expertise for various readers, this
foundational chapter along with other chapters in Part I and II will get you up to speed on the key aspects
of Machine Learning and building Machine Learning pipelines. If you are already familiar with the basic
concepts relevant to Machine Learning and its significance, you can quickly skim through this chapter and
head over to Chapter 2, “The Python Machine Learning Ecosystem,” where we discuss the benefits of Python
for building Machine Learning systems and the major tools and frameworks typically used to solve Machine
Learning problems.

This book heavily emphasizes learning by doing with a lot of code snippets, examples, and multiple case
studies. We leverage Python 3 and depict all our examples with relevant code files (. py) and jupyter notebooks
(.ipynb) for a more interactive experience. We encourage you to refer to the GitHub repository for this book at
https://github.com/dipanjanS/practical-machine-learning-with-python, where we will be sharing
necessary code and datasets pertaining to each chapter. You can leverage this repository to try all the examples
by yourself as you go through the book and adopt them in solving your own real-world problems. Bonus content
relevant to Machine Learning and Deep Learning will also be shared in the future, so keep watching that space!

The Need for Machine Learning

Human beings are perhaps the most advanced and intelligent lifeform on this planet at the moment. We can
think, reason, build, evaluate, and solve complex problems. The human brain is still something we ourselves
haven’t figured out completely and hence artificial intelligence is still something that’s not surpassed human
intelligence in several aspects. Thus you might get a pressing question in mind as to why do we really need
Machine Learning? What is the need to go out of our way to spend time and effort to make machines learn
and be intelligent? The answer can be summed up in a simple sentence, “To make data-driven decisions at
scale”. We will dive into details to explain this sentence in the following sections.

Making Data-Driven Decisions

Getting key information or insights from data is the key reason businesses and organizations invest

heavily in a good workforce as well as newer paradigms and domains like Machine Learning and artificial
intelligence. The idea of data-driven decisions is not new. Fields like operations research, statistics, and
management information systems have existed for decades and attempt to bring efficiency to any business
or organization by using data and analytics to make data-driven decisions. The art and science of leveraging
your data to get actionable insights and make better decisions is known as making data-driven decisions.
Of course, this is easier said than done because rarely can we directly use raw data to make any insightful
decisions. Another important aspect of this problem is that often we use the power of reasoning or intuition
to try to make decisions based on what we have learned over a period of time and on the job. Our brain is
an extremely powerful device that helps us do so. Consider problems like understanding what your fellow
colleagues or friends are speaking, recognizing people in images, deciding whether to approve or reject a
business transaction, and so on. While we can solve these problems almost involuntary, can you explain
someone the process of how you solved each of these problems? Maybe to some extent, but after a while,
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it would be like, “Hey! My brain did most of the thinking for me!” This is exactly why it is difficult to make
machines learn to solve these problems like regular computational programs like computing loan interest or
tax rebates. Solutions to problems that cannot be programmed inherently need a different approach where
we use the data itself to drive decisions instead of using programmable logic, rules, or code to make these
decisions. We discuss this further in future sections.

Efficiency and Scale

While getting insights and making decisions driven by data are of paramount importance, it also needs to

be done with efficiency and at scale. The key idea of using techniques from Machine Learning or artificial
intelligence is to automate processes or tasks by learning specific patterns from the data. We all want computers
or machines to tell us when a stock might rise or fall, whether an image is of a computer or a television, whether
our product placement and offers are the best, determine shopping price trends, detect failures or outages
before they occur, and the list just goes on! While human intelligence and expertise is something that we
definitely can’t do without, we need to solve real-world problems at huge scale with efficiency.

A REAL-WORLD PROBLEM AT SCALE

Consider the following real-world problem. You are the manager of a world-class infrastructure team
for the DSS Company that provides Data Science services in the form of cloud based infrastructure
and analytical platforms for other businesses and consumers. Being a provider of services and
infrastructure, you want your infrastructure to be top-notch and robust to failures and outages.
Considering you are starting out of St. Louis in a small office, you have a good grasp over monitoring
all your network devices including routers, switches, firewalls, and load balancers regularly with your
team of 10 experienced employees. Soon you make a breakthrough with providing cloud based Deep
Learning services and GPUs for development and earn huge profits. However, now you keep getting
more and more customers. The time has come for expanding your base to offices in San Francisco,
New York, and Boston. You have a huge connected infrastructure now with hundreds of network devices
in each building! How will you manage your infrastructure at scale now? Do you hire more manpower
for each office or do you try to leverage Machine Learning to deal with tasks like outage prediction,
auto-recovery, and device monitoring? Think about this for some time from both an engineer as well as
a manager's point of view.

Traditional Programming Paradigm

Computers, while being extremely sophisticated and complex devices, are just another version of our well
known idiot box, the television! “How can that be?” is a very valid question at this point. Let’s consider a
television or even one of the so-called smart TVs, which are available these days. In theory as well as in
practice, the TV will do whatever you program it to do. It will show you the channels you want to see, record
the shows you want to view later on, and play the applications you want to play! The computer has been
doing the exact same thing but in a different way. Traditional programming paradigms basically involve the
user or programmer to write a set of instructions or operations using code that makes the computer perform
specific computations on data to give the desired results. Figure 1-1 depicts a typical workflow for traditional
programming paradigms.
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Figure 1-1. Traditional programming paradigm

From Figure 1-1, you can get the idea that the core inputs that are given to the computer are data and
one or more programs that are basically code written with the help of a programming language, such as
high-level languages like Java, Python, or low-level like C or even Assembly. Programs enable computers
to work on data, perform computations, and generate output. A task that can be performed really well with
traditional programming paradigms is computing your annual tax.

Now, let’s think about the real-world infrastructure problem we discussed in the previous section for
DSS Company. Do you think a traditional programming approach might be able to solve this problem? Well,
it could to some extent. We might be able to tap in to the device data and event streams and logs and access
various device attributes like usage levels, signal strength, incoming and outgoing connections, memory
and processor usage levels, error logs and events, and so on. We could then use the domain knowledge
of our network and infrastructure experts in our teams and set up some event monitoring systems based
on specific decisions and rules based on these data attributes. This would give us what we could call as a
rule-based reactive analytical solution where we can monitor devices, observe if any specific anomalies or
outages occur, and then take necessary action to quickly resolve any potential issues. We might also have
to hire some support and operations staff to continuously monitor and resolve issues as needed. However,
there is still a pressing problem of trying to prevent as many outages or issues as possible before they actually
take place. Can Machine Learning help us in some way?

Why Machine Learning?

We will now address the question that started this discussion of why we need Machine Learning.
Considering what you have learned so far, while the traditional programming paradigm is quite good and
human intelligence and domain expertise is definitely an important factor in making data-driven decisions,
we need Machine Learning to make faster and better decisions. The Machine Learning paradigm tries to
take into account data and expected outputs or results if any and uses the computer to build the program,
which is also known as a model. This program or model can then be used in the future to make necessary
decisions and give expected outputs from new inputs. Figure 1-2 shows how the Machine Learning
paradigm is similar yet different from traditional programming paradigms.
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Figure 1-2. Machine Learning paradigm

Figure 1-2 reinforces the fact that in the Machine Learning paradigm, the machine, in this context the
computer, tries to use input data and expected outputs to try to learn inherent patterns in the data that
would ultimately help in building a model analogous to a computer program, which would help in making
data-driven decisions in the future (predict or tell us the output) for new input data points by using the
learned knowledge from previous data points (its knowledge or experience). You might start to see the
benefit in this. We would not need hand-coded rules, complex flowcharts, case and if-then conditions, and
other criteria that are typically used to build any decision making system or a decision support system. The
basic idea is to use Machine Learning to make insightful decisions.

This will be clearer once we discuss our real-world problem of managing infrastructure for DSS
Company. In the traditional programming approach, we talked about hiring new staff, setting up rule-based
monitoring systems, and so on. If we were to use a Machine Learning paradigm shift here, we could go about
solving the problem using the following steps.

e Leverage device data and logs and make sure we have enough historical data in
some data store (database, logs, or flat files)

e Decide key data attributes that could be useful for building a model. This could be
device usage, logs, memory, processor, connections, line strength, links, and so on.

e  Observe and capture device attributes and their behavior over various time periods
that would include normal device behavior and anomalous device behavior or
outages. These outcomes would be your outputs and device data would be your inputs

e  Feed these input and output pairs to any specific Machine Learning algorithm in
your computer and build a model that learns inherent device patterns and observes
the corresponding output or outcome

e  Deploy this model such that for newer values of device attributes it can predict if a
specific device is behaving normally or it might cause a potential outage

Thus once you are able to build a Machine Learning model, you can easily deploy it and build an
intelligent system around it such that you can not only monitor devices reactively but you would be able
to proactively identify potential problems and even fix them before any issues crop up. Imagine building
self-heal or auto-heal systems coupled with round the clock device monitoring. The possibilities are indeed
endless and you will not have to keep on hiring new staff every time you expand your office or buy new
infrastructure.

Of course, the workflow discussed earlier with the series of steps needed for building a Machine
Learning model is much more complex than how it has been portrayed, but again this is just to emphasize
and make you think more conceptually rather than technically of how the paradigm has shifted in case
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of Machine Learning processes and you need to change your thinking too from the traditional based
approaches toward being more data-driven. The beauty of Machine Learning is that it is never domain
constrained and you can use techniques to solve problems spanning multiple domains, businesses, and
industries. Also, as depicted in Figure 1-2, you always do not need output data points to build a model;
sometimes input data is sufficient (or rather output data might not be present) for techniques more suited
toward unsupervised learning (which we will discuss in depth later on in this chapter). A simple example is
trying to determine customer shopping patterns by looking at the grocery items they typically buy together
in a store based on past transactional data. In the next section, we take a deeper dive toward understanding
Machine Learning.

Understanding Machine Learning

By now, you have seen how a typical real-world problem suitable to solve using Machine Learning might
look like. Besides this, you have also got a good grasp over the basics of traditional programming and
Machine Learning paradigms. In this section, we discuss Machine Learning in more detail. To be more
specific, we will look at Machine Learning from a conceptual as well as a domain-specific standpoint.
Machine Learning came into prominence perhaps in the 1990s when researchers and scientists started
giving it more prominence as a sub-field of Artificial Intelligence (AI) such that techniques borrow concepts
from AI, probability, and statistics, which perform far better compared to using fixed rule-based models
requiring a lot of manual time and effort. Of course, as we have pointed out earlier, Machine Learning didn’t
just come out of nowhere in the 1990s. It is a multi-disciplinary field that has gradually evolved over time
and is still evolving as we speak.

A brief mention of history of evolution would be really helpful to get an idea of the various concepts
and techniques that have been involved in the development of Machine Learning and Al You could say
that it started off in the late 1700s and the early 1800s when the first works of research were published which
basically talked about the Bayes’ Theorem. In fact Thomas Bayes’ major work, “An Essay Towards Solving
a Problem in the Doctrine of Chances,” was published in 1763. Besides this, a lot of research and discovery
was done during this time in the field of probability and mathematics. This paved the way for more ground
breaking research and inventions in the 20th Century, which included Markov Chains by Andrey Markov
in the early 1900s, proposition of a learning system by Alan Turing, and the invention of the very famous
perceptron by Frank Rosenblatt in the 1950s. Many of you might know that neural networks had several
highs and lows since the 1950s and they finally came back to prominence in the 1980s with the discovery
of backpropagation (thanks to Rumelhart, Hinton, and Williams!) and several other inventions, including
Hopfield networks, neocognition, convolutional and recurrent neural networks, and Q-learning. Of course,
rapid strides of evolution started taking place in Machine Learning too since the 1990s with the discovery
of random forests, support vector machines, long short-term memory networks (LSTMs), and development
and release of frameworks in both machine and Deep Learning including torch, theano, tensorflow,
scikit-learn, and so on. We also saw the rise of intelligent systems including IBM Watson, DeepFace, and
AlphaGo. Indeed the journey has been quite a roller coaster ride and there’s still miles to go in this journey.
Take a moment and reflect on this evolutional journey and let’s talk about the purpose of this journey. Why
and when should we really make machines learn?

Why Make Machines Learn?

We have discussed a fair bit about why we need Machine Learning in a previous section when we address
the issue of trying to leverage data to make data-driven decisions at scale using learning algorithms without
focusing too much on manual efforts and fixed rule-based systems. In this section, we discuss in more
detail why and when should we make machines learn. There are several real-world tasks and problems
that humans, businesses, and organizations try to solve day in and day out for our benefit. There are several
scenarios when it might be beneficial to make machines learn and some of them are mentioned as follows.

8
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e Lackof sufficient human expertise in a domain (e.g., simulating navigations in
unknown territories or even spatial planets).

e  Scenarios and behavior can keep changing over time (e.g., availability of
infrastructure in an organization, network connectivity, and so on).

e  Humans have sufficient expertise in the domain but it is extremely difficult to
formally explain or translate this expertise into computational tasks (e.g., speech
recognition, translation, scene recognition, cognitive tasks, and so on).

e  Addressing domain specific problems at scale with huge volumes of data with too
many complex conditions and constraints.

The previously mentioned scenarios are just several examples where making machines learn would be
more effective than investing time, effort, and money in trying to build sub-par intelligent systems that might
be limited in scope, coverage, performance, and intelligence. We as humans and domain experts already
have enough knowledge about the world and our respective domains, which can be objective, subjective,
and sometimes even intuitive. With the availability of large volumes of historical data, we can leverage the
Machine Learning paradigm to make machines perform specific tasks by gaining enough experience by
observing patterns in data over a period of time and then use this experience in solving tasks in the future
with minimal manual intervention. The core idea remains to make machines solve tasks that can be easily
defined intuitively and almost involuntarily but extremely hard to define formally.

Formal Definition

We are now ready to define Machine Learning formally. You may have come across multiple definitions of
Machine Learning by now which include, techniques to make machines intelligent, automation on steroids,
automating the task of automation itself, the sexiest job of the 21st century, making computers learn by
themselves and countless others! While all of them are good quotes and true to certain extents, the best way
to define Machine Learning would be to start from the basics of Machine Learning as defined by renowned
professor Tom Mitchell in 1997.

The idea of Machine Learning is that there will be some learning algorithm that will help the machine
learn from data. Professor Mitchell defined it as follows.

“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure B, if its performance at tasks in T, as measured by P, improves
with experience E.”

While this definition might seem daunting at first, I ask you go read through it a couple of times slowly
focusing on the three parameters—T, P, and E—which are the main components of any learning algorithm,
as depicted in Figure 1-3.
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Machine Learning Algorithm (Model)

Figure 1-3. Defining the components of a learning algorithm

We can simplify the definition as follows. Machine Learning is a field that consists of learning
algorithms that:

e Improve their performance P
e  Atexecuting some task T
e  Over time with experience E

While we discuss at length each of these entities in the following sections, we will not spend time
in formally or mathematically defining each of these entities since the scope of the book is more toward
applied or practical Machine Learning. If you consider our real-world problem from earlier, one of the tasks
T could be predicting outages for our infrastructure; experience E would be what our Machine Learning
model would gain over time by observing patterns from various device data attributes; and the performance
of the model P could be measured in various ways like how accurately the model predicts outages.

Defining the Task, T

We had discussed briefly in the previous section about the task, T, which can be defined in a two-fold
approach. From a problem standpoint, the task, T, is basically the real-world problem to be solved at hand,
which could be anything from finding the best marketing or product mix to predicting infrastructure failures.
In the Machine Learning world, it is best if you can define the task as concretely as possible such that you
talk about what the exact problem is which you are planning to solve and how you could define or formulate
the problem into a specific Machine Learning task.

Machine Learning based tasks are difficult to solve by conventional and traditional programming
approaches. A task, 7, can usually be defined as a Machine Learning task based on the process or workflow
that the system should follow to operate on data points or samples. Typically a data sample or point will
consist of multiple data attributes (also called features in Machine Learning lingo) just like the various
device parameters we mentioned in our problem for DSS Company earlier. A typical data point can be

10
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denoted by a vector (Python list) such that each element in the vector is for a specific data feature or
attribute. We discuss more about features and data points in detail in a future section as well as in Chapter 4,
“Feature Engineering and Selection”.

Coming back to the typical tasks that could be classified as Machine Learning tasks, the following list
describes some popular tasks.

e (Classification or categorization: This typically encompasses the list of problems or
tasks where the machine has to take in data points or samples and assign a specific
class or category to each sample. A simple example would be classifying animal
images into dogs, cats, and zebras.

e  Regression: These types of tasks usually involve performing a prediction such that
areal numerical value is the output instead of a class or category for an input data
point. The best way to understand a regression task would be to take the case of a
real-world problem of predicting housing prices considering the plot area, number
of floors, bathrooms, bedrooms, and kitchen as input attributes for each data point.

¢ Anomaly detection: These tasks involve the machine going over event logs,
transaction logs, and other data points such that it can find anomalous or unusual
patterns or events that are different from the normal behavior. Examples for this
include trying to find denial of service attacks from logs, indications of fraud,
and so on.

e  Structured annotation: This usually involves performing some analysis on input
data points and adding structured metadata as annotations to the original data
that depict extra information and relationships among the data elements. Simple
examples would be annotating text with their parts of speech, named entities,
grammar, and sentiment. Annotations can also be done for images like assigning
specific categories to image pixels, annotate specific areas of images based on their
type, location, and so on.

e Translation: Automated machine translation tasks are typically of the nature such
that if you have input data samples belonging to a specific language, you translate it
into output having another desired language. Natural language based translation is
definitely a huge area dealing with a lot of text data.

¢  Clustering or grouping: Clusters or groups are usually formed from input data
samples by making the machine learn or observe inherent latent patterns,
relationships and similarities among the input data points themselves. Usually there
is a lack of pre-labeled or pre-annotated data for these tasks hence they form a part
of unsupervised Machine Learning (which we will discuss later on). Examples would
be grouping similar products, events and entities.

e Transcriptions: These tasks usually entail various representations of data that are
usually continuous and unstructured and converting them into more structured
and discrete data elements. Examples include speech to text, optical character
recognition, images to text, and so on.

This should give you a good idea of typical tasks that are often solved using Machine Learning, but this
list is definitely not an exhaustive one as the limits of tasks are indeed endless and more are being discovered
with extensive research over time.

11
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Defining the Experience, E

At this point, you know that any learning algorithm typically needs data to learn over time and perform a
specific task, which we named as T. The process of consuming a dataset that consists of data samples or data
points such that a learning algorithm or model learns inherent patterns is defined as the experience, E which
is gained by the learning algorithm. Any experience that the algorithm gains is from data samples or data
points and this can be at any point of time. You can feed it data samples in one go using historical data or
even supply fresh data samples whenever they are acquired.

Thus, the idea of a model or algorithm gaining experience usually occurs as an iterative process, also
known as training the model. You could think of the model to be an entity just like a human being which
gains knowledge or experience through data points by observing and learning more and more about various
attributes, relationships and patterns present in the data. Of course, there are various forms and ways of
learning and gaining experience including supervised, unsupervised, and reinforcement learning but we
will discuss learning methods in a future section. For now, take a step back and remember the analogy we
drew that when a machine truly learns, it is based on data which is fed to it from time to time thus allowing
it to gain experience and knowledge about the task to be solved, such that it can used this experience, E, to
predict or solve the same task, T, in the future for previously unseen data points.

Defining the Performance, P

Let’s say we have a Machine Learning algorithm that is supposed to perform a task, T, and is gaining
experience, E, with data points over a period of time. But how do we know if it’s performing well or behaving
the way it is supposed to behave? This is where the performance, P, of the model comes into the picture.

The performance, P, is usually a quantitative measure or metric that’s used to see how well the algorithm or
model is performing the task, T, with experience, E. While performance metrics are usually standard metrics
that have been established after years of research and development, each metric is usually computed
specific to the task, T, which we are trying to solve at any given point of time.

Typical performance measures include accuracy, precision, recall, F1 score, sensitivity, specificity,
error rate, misclassification rate, and many more. Performance measures are usually evaluated on training
data samples (used by the algorithm to gain experience, E) as well as data samples which it has not seen or
learned from before, which are usually known as validation and test data samples. The idea behind this is to
generalize the algorithm so that it doesn’t become too biased only on the training data points and performs
well in the future on newer data points. More on training, validation, and test data will be discussed when we
talk about model building and validation.

While solving any Machine Learning problem, most of the times, the choice of performance measure,
P, is either accuracy, F1 score, precision, and recall. While this is true in most scenarios, you should always
remember that sometimes it is difficult to choose performance measures that will accurately be able to
give us an idea of how well the algorithm is performing based on the actual behavior or outcome which is
expected from it. A simple example would be that sometimes we would want to penalize misclassification
or false positives more than correct hits or predictions. In such a scenario, we might need to use a modified
cost function or priors such that we give a scope to sacrifice hit rate or overall accuracy for more accurate
predictions with lesser false positives. A real-world example would be an intelligent system that predicts
if we should give a loan to a customer. It’s better to build the system in such a way that it is more cautious
against giving a loan than denying one. The simple reason is because one big mistake of giving a loan to
a potential defaulter can lead to huge losses as compared to denying several smaller loans to potential
customers. To conclude, you need to take into account all parameters and attributes involved in task, T,
such that you can decide on the right performance measures, P, for your system.

12
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A Multi-Disciplinary Field

We have formally introduced and defined Machine Learning in the previous section, which should give

you a good idea about the main components involved with any learning algorithm. Let’s now shift our
perspective to Machine Learning as a domain and field. You might already know that Machine Learning

is mostly considered to be a sub-field of artificial intelligence and even computer science from some
perspectives. Machine Learning has concepts that have been derived and borrowed from multiple fields
over a period of time since its inception, making it a true multi-disciplinary or inter-disciplinary field.
Figure 1-4 should give you a good idea with regard to the major fields that overlap with Machine Learning
based on concepts, methodologies, ideas, and techniques. An important point to remember here is that this
is definitely not an exhaustive list of domains or fields but pretty much depicts the major fields associated in
tandem with Machine Learning.

Machine Leaming

Data Science

Figure 1-4. Machine Learning: a true multi-disciplinary field

The major domains or fields associated with Machine Learning include the following, as depicted in
Figure 1-4. We will discuss each of these fields in upcoming sections.

e  Artificial intelligence

e  Natural language processing
e  Data mining

e  Mathematics

e  Statistics

e  Computer science

e Deep Learning

e  Data Science

13
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You could say that Data Science is like a broad inter-disciplinary field spanning across all the other fields
which are sub-fields inside it. Of course this is just a simple generalization and doesn’t strictly indicate that it
is inclusive of all other other fields as a superset, but rather borrows important concepts and methodologies
from them. The basic idea of Data Science is once again processes, methodologies, and techniques to extract
information from data and domain knowledge. This is a big part of what we discuss in an upcoming section
when we talk about Data Science in further details.

Coming back to Machine Learning, ideas of pattern recognition and basic data mining methodologies
like knowledge discovery of databases (KDD) came into existence when relational databases were very
prominent. These areas focus more on the ability and technique to mine for information from large datasets,
such that you can get patterns, knowledge, and insights of interest. Of course, KDD is a whole process by
itself that includes data acquisition, storage, warehousing, processing, and analysis. Machine Learning
borrows concepts that are more concerned with the analysis phase, although you do need to go through the
other steps to reach to the final stage. Data mining is again a interdisciplinary or multi-disciplinary field and
borrows concepts from computer science, mathematics, and statistics. The consequence of this is the fact
that computational statistics form an important part of most Machine Learning algorithms and techniques.

Artificial intelligence (Al) is the superset consisting of Machine Learning as one of its specialized areas.
The basic idea of Al is the study and development of intelligence as exhibited by machines based on their
perception of their environment, input parameters and attributes and their response such that they can
perform desired tasks based on expectations. Al itself is a truly massive field which is itself inter-disciplinary.
It draws on concepts from mathematics, statistics, computer science, cognitive sciences, linguistics,
neuroscience, and many more. Machine Learning is more concerned with algorithms and techniques that
can be used to understand data, build representations, and perform tasks such as predictions. Another
major sub-field under Al related to Machine Learning is natural language processing (NLP) which borrows
concepts heavily from computational linguistics and computer science. Text Analytics is a prominent field
today among analysts and data scientists to extract, process and understand natural human language.
Combine NLP with AT and Machine Learning and you get chatbots, machine translators, and virtual
personal assistants, which are indeed the future of innovation and technology!

Coming to Deep Learning, it is a subfield of Machine Learning itself which deals more with techniques
related to representational learning such that it improves with more and more data by gaining more
experience. It follows a layered and hierarchical approach such that it tries to represent the given input
attributes and its current surroundings, using a nested layered hierarchy of concept representations such
that, each complex layer is built from another layer of simpler concepts. Neural networks are something
which is heavily utilized by Deep Learning and we will look into Deep Learning in a bit more detail in a
future section and solve some real-world problems later on in this book.

Computer science is pretty much the foundation for most of these domains dealing with study,
development, engineering, and programming of computers. Hence we won’t be expanding too much on this
but you should definitely remember the importance of computer science for Machine Learning to exist and
be easily applied to solve real-world problems. This should give you a good idea about the broad landscape
of the multi-disciplinary field of Machine Learning and how it is connected across multiple related and
overlapping fields. We will discuss some of these fields in more detail in upcoming sections and cover some
basic concepts in each of these fields wherever necessary.

Let’s look at some core fundamentals of Computer Science in the following section.

Computer Science

The field of computer science (CS) can be defined as the study of the science of understanding computers.
This involves study, research, development, engineering, and experimentation of areas dealing with
understanding, designing, building, and using computers. This also involves extensive design and
development of algorithms and programs that can be used to make the computer perform computations
and tasks as desired. There are mainly two major areas or fields under computer science, as follows.
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e  Theoretical computer science
e Applied or practical computer science

The two major areas under computer science span across multiple fields and domains wherein each
field forms a part or a sub-field of computer science. The main essence of computer science includes
formal languages, automata and theory of computation, algorithms, data structures, computer design and
architecture, programming languages, and software engineering principles.

Theoretical Computer Science

Theoretical computer science is the study of theory and logic that tries to explain the principles and
processes behind computation. This involves understanding the theory of computation which talks about
how computation can be used efficiently to solve problems. Theory of computation includes the study of
formal languages, automata, and understanding complexities involved in computations and algorithms.
Information and coding theory is another major field under theoretical CS that has given us domains like
signal processing, cryptography, and data compression. Principles of programming languages and their
analysis is another important aspect that talks about features, design, analysis, and implementations

of various programming languages and how compilers and interpreters work in understanding these
languages. Last but never the least, data structures and algorithms are the two fundamental pillars of
theoretical CS used extensively in computational programs and functions.

Practical Computer Science

Practical computer science also known as applied computer science is more about tools, methodologies,

and processes that deal with applying concepts and principles from computer science in the real world to
solve practical day-to-day problems. This includes emerging sub-fields like artificial intelligence, Machine
Learning, computer vision, Deep Learning, natural language processing, data mining, and robotics and they
try to solve complex real-world problems based on multiple constraints and parameters and try to emulate
tasks that require considerable human intelligence and experience. Besides these, we also have well-
established fields, including computer architecture, operating systems, digital logic and design, distributed
computing, computer networks, security, databases, and software engineering.

Important Concepts

These are several concepts from computer science that you should know and remember since they would be
useful as foundational concepts to understand the other chapters, concepts, and examples better. It’s not an
exhaustive list but should pretty much cover enough to get started.

Algorithms

An algorithm can be described as a sequence of steps, operations, computations, or functions that can

be executed to carry out a specific task. They are basically methods to describe and represent a computer
program formally through a series of operations, which are often described using plain natural language,
mathematical symbols, and diagrams. Typically flowcharts, pseudocode, and natural language are used
extensively to represent algorithms. An algorithm can be as simple as adding two numbers and as complex
as computing the inverse of a matrix.
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Programming Languages

A programming language is a language that has its own set of symbols, words, tokens, and operators having
their own significance and meaning. Thus syntax and semantics combine to form a formal language in itself.
This language can be used to write computer programs, which are basically real-world implementations of
algorithms that can be used to specify specific instructions to the computer such that it carries our necessary
computation and operations. Programming languages can be low level like C and Assembly or high level
languages like Java and Python.

Code

This is basically source code that forms the foundation of computer programs. Code is written using
programming languages and consists of a collection of computer statements and instructions to make the
computer perform specific desired tasks. Code helps convert algorithms into programs using programming
languages. We will be using Python to implement most of our real-world Machine Learning solutions.

Data Structures

Data structures are specialized structures that are used to manage data. Basically they are real-world
implementations for abstract data type specifications that can be used to store, retrieve, manage, and
operate on data efficiently. There is a whole suite of data structures like arrays, lists, tuples, records,
structures, unions, classes, and many more. We will be using Python data structures like lists, arrays,
dataframes, and dictionaries extensively to operate on real-world data!

Data Science

The field of Data Science is a very diverse, inter-disciplinary field which encompasses multiple fields that
we depicted in Figure 1-4. Data Science basically deals with principles, methodologies, processes, tools, and
techniques to gather knowledge or information from data (structured as well as unstructured). Data Science
is more of a compilation of processes, techniques, and methodologies to foster a data-driven decision

based culture. In fact Drew Conway’s “Data Science Venn Diagram,” depicted in Figure 1-5, shows the core
components and essence of Data Science, which in fact went viral and became insanely popular!
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Figure 1-5. Drew Conway’s Data Science Venn diagram

Figure 1-5 is quite intuitive and easy to interpret. Basically there are three major components and
Data Science sits at the intersection of them. Math and statistics knowledge is all about applying various
computational and quantitative math and statistical based techniques to extract insights from data. Hacking
skills basically indicate the capability of handling, processing, manipulating and wrangling data into easy to
understand and analyzable formats. Substantive expertise is basically the actual real-world domain expertise
which is extremely important when you are solving a problem because you need to know about various
factors, attributes, constraints, and knowledge related to the domain besides your expertise in data and
algorithms.

Thus Drew rightly points out that Machine Learning is a combination of expertise on data hacking
skills, math, and statistical learning methods and for Data Science, you need some level of domain expertise
and knowledge along with Machine Learning. You can check out Drew’s personal insights in his article at
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram, where talks all about the Data
Science Venn diagram. Besides this, we also have Brendan Tierney, who talks about the true nature of Data
Science being a multi-disciplinary field with his own depiction, as shown in Figure 1-6.
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Data Science Is Multidisciplinary
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By Brendan Tierney, 2012
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Figure 1-6. Brendan Tierney's depiction of Data Science as a true multi-disciplinary field

If you observe his depiction closely, you will see a lot of the domains mentioned here are what we just
talked about in the previous sections and matches a substantial part of Figure 1-4. You can clearly see Data
Science being the center of attention and drawing parts from all the other fields and Machine Learning as a
sub-field.

Mathematics

The field of mathematics deals with numbers, logic, and formal systems. The best definition of mathematics
was coined by Aristotle as “The science of quantity”. The scope of mathematics as a scientific field is huge
spanning across areas including algebra, trigonometry, calculus, geometry, and number theory just to
name a few major fields. Linear algebra and probability are two major sub-fields under mathematics that
are used extensively in Machine Learning and we will be covering a few important concepts from them in
this section. Our major focus will always be on practical Machine Learning, and applied mathematics is an
important aspect for the same. Linear algebra deals with mathematical objects and structures like vectors,
matrices, lines, planes, hyperplanes, and vector spaces. The theory of probability is a mathematical field
and framework used for studying and quantifying events of chance and uncertainty and deriving theorems
and axioms from the same. These laws and axioms help us in reasoning, understanding, and quantifying
uncertainty and its effects in any real-world system or scenario, which helps us in building our Machine
Learning models by leveraging this framework.
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Important Concepts

In this section, we discuss some key terms and concepts from applied mathematics, namely linear algebra
and probability theory. These concepts are widely used across Machine Learning and form some of the
foundational structures and principles across Machine Learning algorithms, models, and processes.

Scalar

A scalar usually denotes a single number as opposed to a collection of numbers. A simple example might be
x=>5or x € R, where x is the scalar element pointing to a single number or a real-valued single number.

Vector

A vector is defined as a structure that holds an array of numbers which are arranged in order. This basically
means the order or sequence of numbers in the collection is important. Vectors can be mathematically
denoted as x = [x,, x,, ..., x,], which basically tells us that x is a one-dimensional vector having  elements in
the array. Each element can be referred to using an array index determining its position in the vector. The
following snippet shows us how we can represent simple vectors in Python.

In [1]: x = [1, 2, 3, 4, 5]
ceat X
out[1]: [1, 2, 3, 4, 5]
In [2]: import numpy as np
..: x = np.array([1, 2, 3, 4, 5])

.t print(x)
...t print(type(x))
[12345]
<class 'numpy.ndarray'>

Thus you can see that Python lists as well as numpy based arrays can be used to represent vectors. Each
row in a dataset can act as a one-dimensional vector of n attributes, which can serve as inputs to learning
algorithms.

Matrix

A matrix is a two-dimensional structure that basically holds numbers. It’s also often referred to as a 2D array.
Each element can be referred to using a row and column index as compared to a single vector index in case

mll m12 m13

of vectors. Mathematically, you can depict a matrixas M =|m, ~m,, m, | such that Mis a 3 x 3 matrix
m31 m32 m33

having three rows and three columns and each element is denoted by m _such that r denotes the row index

and c denotes the column index. Matrices can be easily represented as list of lists in Python and we can
leverage the numpy array structure as depicted in the following snippet.

In [3]: m = np.array([[1, 5, 2],

. [4; 7, 4])
: [2, 0, 9]])
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In [4]: # view matrix
...t print(m)
[

]
]
]

—r——
N B
o N wuv
O BN

]

In [5]: # view dimensions
...t print(m.shape)
(3, 3)

Thus you can see how we can easily leverage numpy arrays to represent matrices. You can think of
a dataset with rows and columns as a matrix such that the data features or attributes are represented by
columns and each row denotes a data sample. We will be using the same analogy later on in our analyses.
Of course, you can perform matrix operations like add, subtract, products, inverse, transpose, determinants,
and many more. The following snippet shows some popular matrix operations.

In [9]: # matrix transpose
: print('Matrix Transpose:\n', m.transpose(), '\n")

.t # matrix determinant
...t print ('Matrix Determinant:', np.linalg.det(m), '\n')

..t # matrix inverse
: m_inv = np.linalg.inv(m)
: print ('Matrix inverse:\n', m_inv, '\n")

..t # identity matrix (result of matrix x matrix_inverse)
..t iden_m = np.dot(m, m_inv)

: iden_m = np.round(np.abs(iden_m), 0)

: print ('Product of matrix and its inverse:\n', iden_m)

Matrix Transpose:
[[142]
[57 0]
[2 4 9]]

Matrix Determinant: -105.0

Matrix inverse:

[[-0.6 0.42857143 -0.05714286]
[ 0.26666667 -0.04761905 -0.03809524]
[ 0.13333333 -0.0952381  0.12380952]]

Product of matrix and its inverse:
[[ 1. 0. o0.]

[ 0. 1. o0.]

[ 0. 0. 1.]]

This should give you a good idea to get started with matrices and their basic operations. More on this is
covered in Chapter 2, “The Python Machine Learning Ecosystem”.
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Tensor

You can think of a tensor as a generic array. Tensors are basically arrays with a variable number of axes.
An element in a three-dimensional tensor T can be denoted by Txyz where x, y, z denote the three axes for
specifying element T.

Norm

The norm is a measure that is used to compute the size of a vector often also defined as the measure of
distance from the origin to the point denoted by the vector. Mathematically, the pth norm of a vector is
denoted as follows.

l
== (ijp

Such that p > 1 and p € R. Popular norms in Machine Learning include the L’ norm used extensively in Lasso
regression models and the L? norm, also known as the Euclidean norm, used in ridge regression models.

Eigen Decomposition

This is basically a matrix decomposition process such that we decompose or break down a matrix into a

set of eigen vectors and eigen values. The eigen decomposition of a matrix can be mathematically denoted
by M = V diag(2) V! such that the matrix M has a total of n linearly independent eigen vectors represented
as {v™, v, ..., v} and their corresponding eigen values can be represented as {1,, 1,, ..., 4, }. The matrix V
consists of one eigen vector per column of the matrixi.e., V= [vW, v®, ..., v”] and the vector 4 consists of all
the eigen values togetheri.e., 1=[4, 4, ..., 4 ].

An eigen vector of the matrix is defined as a non-zero vector such that on multiplying the matrix by the
eigen vector, the result only changes the scale of the eigen vector itself, i.e., the result is a scalar multiplied by
the eigen vector. This scalar is known as the eigen value corresponding to the eigen vector. Mathematically
this can be denoted by Mv = Av where M is our matrix, v is the eigen vector and 4 is the corresponding eigen
value. The following Python snippet depicts how to extract eigen values and eigen vectors from a matrix.

n [4 ] # eigendecomposition
- np.array([[1, 5, 2],
(4, 7, 4],
(2, 0, 9]])

: eigen vals, eigen vecs = np.linalg.eig(m)

..t print('Eigen Values:', eigen_vals, '\n')
..t print('Eigen Vectors:\n', eigen vecs)

Eigen Values: [ -1.32455532 11.32455532 7. ]
Eigen Vectors:
[[-0.91761521 0.46120352 -0.46829291]

[ 0.35550789 0.79362022 -0.74926865]
[ 0.17775394 0.39681011 0.46829291]]
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Singular Value Decomposition

The process of singular value decomposition, also known as SVD, is another matrix decomposition or
factorization process such that we are able to break down a matrix to obtain singular vectors and singular
values. Any real matrix will always be decomposed by SVD even if eigen decomposition may not be
applicable in some cases. Mathematically, SVD can be defined as follows. Considering a matrix M having
dimensions m x n such that m denotes total rows and n denotes total columns, the SVD of the matrix can be
represented with the following equation.

M, =U,.S, VI

mxm “mxn © nxn

This gives us the following main components of the decomposition equation.

e U, isanmxmunitary matrix where each column represents a left singular vector

e S isan mxnmatrix with positive numbers on the diagonal, which can also be

mxn

represented as a vector of the singular values
e V! isannXxn unitary matrix where each row represents a right singular vector

In some representations, the rows and columns might be interchanged but the end result should be
the same, i.e., U and V are always orthogonal. The following snippet shows a simple SVD decomposition in
Python.

In [7]: # SVD
...t m=np.array([[2, 5, 2],
(4, 7, 4],
[2, 0, 91])

: U, S, VT = np.linalg.svd(m)
..t print('Getting SVD outputs:-\n")
«o.t print('U:\n', U, "\n")
coot print('S:\n', S, "\n")
<ot print('VT:\n", VT, "\n")

Getting SVD outputs:-

U:
[[ 0.3831556 -0.39279153 0.83600634]
[ 0.68811254 -0.48239977 -0.54202545]
[ 0.61619228 0.78294653 0.0854506 ]]
S:

[ 12.10668383  6.91783499  1.25370079]

VT:
[[ 0.36079164 0.55610321 0.74871798]
[-0.10935467 -0.7720271 0.62611158]
[-0.92621323 0.30777163 0.21772844]]

SVD as a technique and the singular values in particular are very useful in summarization based
algorithms and various other methods like dimensionality reduction.
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Random Variable

Used frequently in probability and uncertainty measurement, a random variable is basically a variable that
can take on various values at random. These variables can be of discrete or continuous type in general.

Probability Distribution

A probability distribution is a distribution or arrangement that depicts the likelihood of a random variable
or variables to take on each of its probable states. There are usually two main types of distributions based on
the variable being discrete or continuous.

Probability Mass Function

A probability mass function, also known as PME is a probability distribution over discrete random variables.
Popular examples include the Poisson and binomial distributions.

Probability Density Function

A probability density function, also known as PDE, is a probability distribution over continuous random
variables. Popular examples include the normal, uniform, and student’s T distributions.

Marginal Probability

The marginal probability rule is used when we already have the probability distribution for a set of random
variables and we want to compute the probability distribution for a subset of these random variables. For
discrete random variables, we can define marginal probability as follows.

P(X):;P(x'y)

For continuous random variables, we can define it using the integration operation as follows.

p(x)=[p(x.y)dy

Conditional Probability

The conditional probability rule is used when we want to determine the probability that an event is going to
take place, such that another event has already taken place. This is mathematically represented as follows.

p(x] y)=2L2)

P(y)

This tells us the conditional probability of x, given that y has already taken place.
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Bayes Theorem

This is another rule or theorem which is useful when we know the probability of an event of interest P(A), the
conditional probability for another event based on our event of interest P(B | A) and we want to determine
the conditional probability of our event of interest given the other event has taken place P(A | B). This can be
defined mathematically using the following expression.

P(B|4)P(4)

P(A|B)= P(8)

such that A and B are events and P(B)= ZP(B | A)P(A) .

Statistics

The field of statistics can be defined as a specialized branch of mathematics that consists of frameworks
and methodologies to collect, organize, analyze, interpret, and present data. Generally this falls more under
applied mathematics and borrows concepts from linear algebra, distributions, probability theory, and
inferential methodologies. There are two major areas under statistics that are mentioned as follows.

e  Descriptive statistics
e Inferential statistics

The core component of any statistical process is data. Hence typically data collection is done first, which
could be in global terms, often called a population or a more restricted subset due to various constraints
often knows as a sample. Samples are usually collected manually, from surveys, experiments, data stores,
and observational studies. From this data, various analyses are carried out using statistical methods.

Descriptive statistics is used to understand basic characteristics of the data using various aggregation
and summarization measures to describe and understand the data better. These could be standard
measures like mean, median, mode, skewness, kurtosis, standard deviation, variance, and so on. You can
refer to any standard book on statistics to deep dive into these measures if you're interested. The following
snippet depicts how to compute some essential descriptive statistical measures.

In [74]: # descriptive statistics
: import scipy as sp
...t import numpy as np

... # get data
: nums = np.random.randint(1,20, size=(1,15))[0]
: print('Data: ', nums)

...t # get descriptive stats

«..: print ('Mean:', sp.mean(nums))

... print ('Median:', sp.median(nums))
.t print ('Mode:', sp.stats.mode(nums))
: print ('Standard Deviation:', sp.std(nums))
: print ('Variance:', sp.var(nums))

...t print ('Skew:', sp.stats.skew(nums))

..t print ('Kurtosis:', sp.stats.kurtosis(nums))
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Data: [ 219 8 10 17 13 18 9 19 16 4 14 16 15 5]
Mean: 12.3333333333

Median: 14.0

Mode: ModeResult(mode=array([16]), count=array([2]))
Standard Deviation: 5.44875113112

Variance: 29.6888888889

Skew: -0.49820055879944575

Kurtosis: -1.0714842769550714

Libraries and frameworks like pandas, scipy, and numpy in general help us compute descriptive
statistics and summarize data easily in Python. We cover these frameworks as well as basic data analysis and
visualization in Chapters 2 and 3.

Inferential statistics are used when we want to test hypothesis, draw inferences, and conclusions about
various characteristics of our data sample or population. Frameworks and techniques like hypothesis
testing, correlation, and regression analysis, forecasting, and predictions are typically used for any form
of inferential statistics. We look at this in much detail in subsequent chapters when we cover predictive
analytics as well as time series based forecasting.

Data Mining

The field of data mining involves processes, methodologies, tools and techniques to discover and extract
patterns, knowledge, insights and valuable information from non-trivial datasets. Datasets are defined
as non-trivial when they are substantially huge usually available from databases and data warehouses.
Once again, data mining itself is a multi-disciplinary field, incorporating concepts and techniques from
mathematics, statistics, computer science, databases, Machine Learning and Data Science. The term is a
misnomer in general since the “mining” refers to the mining of actual insights or information from the data
and not data itself! In the whole process of KDD or Knowledge Discovery in Databases, data mining is the
step where all the analysis takes place.

In general, both KDD as well as data mining are closely linked with Machine Learning since they
are all concerned with analyzing data to extract useful patterns and insights. Hence methodologies,
concepts, techniques, and processes are shared among them. The standard process for data mining followed
in the industry is known as the CRISP-DM model, which we discuss in more detail in an upcoming section in
this chapter.

Artificial Intelligence

The field of artificial Intelligence encompasses multiple sub-fields including Machine Learning, natural
language processing, data mining, and so on. It can be defined as the art, science and engineering of making
intelligent agents, machines and programs. The field aims to provide solutions for one simple yet extremely
tough objective, “Can machines think, reason, and act like human beings?” Al in fact existed as early as the
1300s when people started asking such questions and conducting research and development on building
tools that could work on concepts instead of numbers like a calculator does. Progress in Al took place in a
steady pace with discoveries and inventions by Alan Turing, McCullouch, and Pitts Artificial Neurons. Al was
revived once again after a slowdown till the 1980s with success of expert systems, the resurgence of neural
networks thanks to Hopfield, Rumelhart, McClelland, Hinton, and many more. Faster and better computation
thanks to Moore’s Law led to fields like data mining, Machine Learning and even Deep Learning come into
prominence to solve complex problems that would otherwise have been impossible to solve using traditional
approaches. Figure 1-7 shows some of the major facets under the broad umbrella of AL
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Figure 1-7. Diverse major facets under the AI umbrella

Some of the main objectives of Al include emulation of cognitive functions also known as cognitive
learning, semantics, and knowledge representation, learning, reasoning, problem solving, planning, and
natural language processing. Al borrows tools, concepts, and techniques from statistical learning, applied
mathematics, optimization methods, logic, probability theory, Machine Learning, data mining, pattern
recognition, and linguistics. Al is still evolving over time and a lot of innovation is being done in this
field including some of the latest discoveries and inventions like self-driving cars, chatbots, drones, and
intelligent robots.

Natural Language Processing

The field of Natural Language Processing (NLP) is a multi-disciplinary field combining concepts from
computational linguistics, computer science and artificial intelligence. NLP involves the ability to

make machines process, understand, and interact with natural human languages. The major objective

of applications or systems built using NLP is to enable interactions between machines and natural
languages that have evolved over time. Major challenges in this aspect include knowledge and semantics
representation, natural language understanding, generation, and processing. Some of the major applications
of NLP are mentioned as follows.

e  Machine translation

e  Speech recognition

e Question answering systems

e  Context recognition and resolution
e  Textsummarization

e  Text categorization
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e Information extraction
e Sentiment and emotion analysis
e  Topic segmentation

Using techniques from NLP and text analytics, you can work on text data to process, annotate, classify,
cluster, summarize, extract semantics, determine sentiment, and much more! The following example
snippet depicts some basic NLP operations on textual data where we annotate a document (text sentence)
with various components like parts of speech, phrase level tags, and so on based on its constituent grammar.
You can refer to page 159 of Text Analytics with Python (Apress; Dipanjan Sarkar, 2016) for more details on
constituency parsing.

from nltk.parse.stanford import StanfordParser
sentence = 'The quick brown fox jumps over the lazy dog'

# create parser object
scp = StanfordParser(path_to jar='E:/stanford/stanford-parser-full-2015-04-20/stanford-
parser.jar',

path_to models jar='E:/stanford/stanford-parser-full-2015-04-20/stanford-
parser-3.5.2-models.jar")

# get parse tree
result = list(scp.raw_parse(sentence))

tree = result[o0]

In [98]: # print the constituency parse tree

...t print(tree)
(ROOT
(NP
(NP (DT The) (33 quick) (33 brown) (NN fox))
(NP

(NP (NNS jumps))
(PP (IN over) (NP (DT the) (33 lazy) (NN dog))))))

In [99]: # visualize constituency parse tree
..: tree.draw()
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Figure 1-8. Constituency parse tree for our sample sentence

Thus you can clearly see that Figure 1-8 depicts the constituency grammar based parse tree for our
sample sentence, which consists of multiple noun phrases (NP). Each phrase has several words that are also
annotated with their own parts of speech (POS) tags. We cover more on processing and analyzing textual
data for various steps in the Machine Learning pipeline as well as practical use cases in subsequent chapters.

Deep Learning

The field of Deep Learning, as depicted earlier, is a sub-field of Machine Learning that has recently come
into much prominence. Its main objective is to get Machine Learning research closer to its true goal

of “making machines intelligent”. Deep Learning is often termed as a rebranded fancy term for neural
networks. This is true to some extent but there is definitely more to Deep Learning than just basic neural
networks. Deep Learning based algorithms involves the use of concepts from representation learning
where various representations of the data are learned in different layers that also aid in automated
feature extraction from the data. In simple terms, a Deep Learning based approach tries to build machine
intelligence by representing data as a layered hierarchy of concepts, where each layer of concepts is built
from other simpler layers. This layered architecture itself is one of the core components of any Deep
Learning algorithm.

In any basic supervised Machine Learning technique, we basically try to learn a mapping between
our data samples and our output and then try to predict output for newer data samples. Representational
learning tries to understand the representations in the data itself besides learning mapping from inputs
to outputs. This makes Deep Learning algorithms extremely powerful as compared to regular techniques,
which require significant expertise in areas like feature extraction and engineering. Deep Learning is
also extremely effective with regard to its performance as well as scalability with more and more data as
compared to older Machine Learning algorithms. This is depicted in Figure 1-9 based on a slide from
Andrew Ng's talk at the Extract Data Conference.
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Why deep learning

Deep learning

Performance

Amount of data

How do data science techniques scale with amount of data?

Figure 1-9. Performance comparison of Deep Learning and traditional Machine Learning by Andrew Ng

Indeed, as rightly pointed out by Andrew Ng, there have been several noticeable trends and characteristics
related to Deep Learning that we have noticed over the past decade. They are summarized as follows.

Deep Learning algorithms are based on distributed representational learning and
they start performing better with more data over time.

Deep Learning could be said to be a rebranding of neural networks, but there is a lot
into it compared to traditional neural networks.

Better software frameworks like tensorflow, theano, caffe, mxnet, and keras,
coupled with superior hardware have made it possible to build extremely complex,
multi-layered Deep Learning models with huge sizes.

Deep Learning has multiple advantages related to automated feature extraction as
well as performing supervised learning operations, which have helped data scientists
and engineers solve increasingly complex problems over time.

The following points describe the salient features of most Deep Learning algorithms, some of which we
will be using in this book.

Hierarchical layered representation of concepts. These concepts are also called
features in Machine Learning terminology (data attributes).

Distributed representational learning of the data happens through a multi-layered
architecture (unsupervised learning).

More complex and high-level features and concepts are derived from simpler, low-
level features.
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e A “deep” neural network usually is considered to have at least more than one hidden
layer besides the input and output layers. Usually it consists of a minimum of three
to four hidden layers.

e  Deep architectures have a multi-layered architecture where each layer consists of
multiple non-linear processing units. Each layer’s input is the previous layer in the
architecture. The first layer is usually the input and the last layer is the output.

e Can perform automated feature extraction, classification, anomaly detection, and
many other Machine Learning tasks.

This should give you a good foundational grasp of the concepts pertaining to Deep Learning. Suppose
we had a real-world problem of object recognition from images. Figure 1-10 will give us a good idea of how
typical Machine Learning and Deep Learning pipelines differ (Source: Yann LeCun).

Deep Learning = Learning HierarchicakRepresentations

Y LeCun

@ Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor
Feature
Extractor

Feature " Mid-Level
Extractor Features

Figure 1-10. Comparing various learning pipelines by Yann LeCun

You can clearly see how Deep Learning methods involve a hierarchical layer representation of features
and concept from the raw data as compared to other Machine Learning methods. We conclude this section
with a brief coverage of some essential concepts pertaining to Deep Learning.
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Important Concepts

In this section, we discuss some key terms and concepts from Deep Learning algorithms and architecture.
This should be useful in the future when you are building your own Deep Learning models.

Artificial Neural Networks

An Artificial Neural Network (ANN) is a computational model and architecture that simulates biological
neurons and the way they function in our brain. Typically, an ANN has layers of interconnected nodes. The
nodes and their inter-connections are analogous to the network of neurons in our brain. A typical ANN has
an input layer, an output layer, and at least one hidden layer between the input and output with
inter-connections, as depicted in Figure 1-11

Hidden
Input '

Output

Figure 1-11. A typical artificial neural network

Any basic ANN will always have multiple layers of nodes, specific connection patterns and links
between the layers, connection weights and activation functions for the nodes/neurons that convert
weighted inputs to outputs. The process of learning for the network typically involves a cost function and the
objective is to optimize the cost function (typically minimize the cost). The weights keep getting updated in
the process of learning.
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Backpropagation

The backpropagation algorithm is a popular technique to train ANNs and it led to a resurgence in the
popularity of neural networks in the 1980s. The algorithm typically has two main stages—propagation and
weight updates. They are described briefly as follows.

1. Propagation

a. Theinput data sample vectors are propagated forward through the neural
network to generate the output values from the output layer.

b. Compare the generated output vector with the actual/desired output vector
for that input data vector.

c. Compute difference in error at the output units.

d. Backpropagate error values to generate deltas at each node/neuron.

2.  Weight Update

a. Compute weight gradients by multiplying the output delta (error) and input
activation.

b. Use learning rate to determine percentage of the gradient to be subtracted
from original weight and update the weight of the nodes.

These two stages are repeated multiple times with multiple iterations/epochs until we get satisfactory
results. Typically backpropagation is used along with optimization algorithms or functions like stochastic
gradient descent.

Multilayer Perceptrons

A multilayer perceptron, also known as MLP, is a fully connected, feed-forward artificial neural network with
at least three layers (input, output, and at least one hidden layer) where each layer is fully connected to the
adjacent layer. Each neuron usually is a non-linear functional processing unit. Backpropagation is typically
used to train MLPs and even deep neural nets are MLPs when they have multiple hidden layers. Typically
used for supervised Machine Learning tasks like classification.

Convolutional Neural Networks

A convolutional neural network, also known as convnet or CNN, is a variant of the artificial neural network,
which specializes in emulating functionality and behavior of our visual cortex. CNNs typically consist of the
following three components.

e Multiple convolutional layers, which consist of multiple filters that are convolved
across the height and width of the input data (e.g., image raw pixels) by basically
computing a dot product to give a two-dimensional activation map. On stacking
all the maps across all the filters, we end up getting the final output from a
convolutional layer.
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e Pooling layers, which are basically layers that perform non-linear down sampling to
reduce the input size and number of parameters from the convolutional layer output
to generalize the model more, prevent overfitting and reduce computation time. Filters
go through the heights and width of the input and reduce it by taking an aggregate like
sum, average, or max. Typical pooling components are average or max pooling.

e Fully connected MLPs to perform tasks such as image classification and object
recognition.

A typical CNN architecture with all the components is depicted as follows in Figure 1-12, which is a
LeNet CNN model (Source: deeplearning.net)

Input layer (S1) 4 feature maps

(CI) 4 feature maps (52) 6 feature maps (C2) 6 feature maps

N

l convolution layer | sub-sampling layer | convolution layer | sub-sampling layer l fully connected HLPJ

Figure 1-12. LeNet CNN model (Source: deeplearning.net)

Recurrent Neural Networks

A recurrent neural network, also known as RNN, is a special type of an artificial neural network that allows
persisting information based on past knowledge by using a special type of looped architecture. They are used a
lot in areas related to data with sequences like predicting the next word of a sentence. These looped networks
are called recurrent because they perform the same operations and computation for each and every element
in a sequence of input data. RNNs have memory that helps in capturing information from past sequences.
Figure 1-13 (Source: Colah’s blog at http://colah.github.io/posts/2015-08-Understanding-LSTMs/) shows
the typical structure of a RNN and how it works by unrolling the network based on input sequence length to be

fed at any point in time.
A

® ®
R A

6 & o

An unrolled recurrent neural network.

>

Figure 1-13. A recurrent neural network (Source: Colah’s Blog)
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Figure 1-13 clearly depicts how the unrolled network will accept sequences of length ¢ in each pass of
the input data and operate on the same.

Long Short-Term Memory Networks

RNNs are good in working on sequence based data but as the sequences start increasing, they start losing
historical context over time in the sequence and hence outputs are not always what is desired. This is where
Long Short-Term Memory Networks, popularly known as LSTMs, come into the picture! Introduced by
Hochreiter & Schmidhuber in 1997, LSTMs can remember information from really long sequence based
data and prevent issues like the vanishing gradient problem, which typically occurs in ANNSs trained with
backpropagation. LSTMs usually consist of three or four gates, including input, output, and a special forget
gate. Figure 1-14 shows a high-level pictorial representation of a single LSTM cell.

forget gate
self-recurrent

" connection
memory cell o » memory cell
input output

Input gate output gate

Figure 1-14. An LSTM cell (Source: deeplearning.net)

The input gate usually can allow or deny incoming signals or inputs to alter the memory cell state. The
output gate usually propagates the value to other neurons as needed. The forget gate controls the memory
cell’s self-recurrent connection to remember or forget previous states as necessary. Multiple LSTM cells are
usually stacked in any Deep Learning network to solve real-world problems like sequence prediction.

Autoencoders

An autoencoder is a specialized Artificial Neural Network that is primarily used for performing unsupervised
Machine Learning tasks. Its main objective is to learn data representations, approximations, and encodings.
Autoencoders can be used for building generative models, performing dimensionality reduction, and
detecting anomalies.

Machine Learning Methods

Machine Learning has multiple algorithms, techniques, and methodologies that can be used to build models
to solve real-world problems using data. This section tries to classify these Machine Learning methods
under some broad categories to give some sense to the overall landscape of Machine Learning methods that
are ultimately used to perform specific Machine Learning tasks we discussed in a previous section. Typically
the same Machine Learning methods can be classified in multiple ways under multiple umbrellas. Following
are some of the major broad areas of Machine Learning methods.
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1.  Methods based on the amount of human supervision in the learning process
a. Supervised learning
b. Unsupervised learning
c. Semi-supervised learning
d. Reinforcement learning

2. Methods based on the ability to learn from incremental data samples
a. Batchlearning
b.  Online learning

3. Methods based on their approach to generalization from data samples
a. Instance based learning
b. Model based learning

We briefly cover the various types of learning methods in the following sections to build a good
foundation with regard to Machine Learning methods and the type of tasks they usually solve. This should
give you enough knowledge to start understanding which methods should be applied in what scenarios
when we tackle various real-world use cases and problems in the subsequent chapters of the book.

Discussing mathematical details and internals of each and every Machine Learning algorithm would be out
of the current scope and intent of the book, since the focus is more on solving real-world problems by applying
Machine Learning and not on theoretical Machine Learning. Hence you are encouraged to refer to standard
Machine Learning references like Pattern Recognition and Machine Learning, Christopher Bishop, 2006, and
The Elements of Statistical Learning, Robert Tibshirani et al., 2001, for more theoretical and mathematical
details on the internals of Machine Learning algorithms and methods.

Supervised Learning

Supervised learning methods or algorithms include learning algorithms that take in data samples (known
as training data) and associated outputs (known as labels or responses) with each data sample during the
model training process. The main objective is to learn a mapping or association between input data samples
x and their corresponding outputs y based on multiple training data instances. This learned knowledge can
then be used in the future to predict an output y’ for any new input data sample x’ which was previously
unknown or unseen during the model training process. These methods are termed as supervised because
the model learns on data samples where the desired output responses/labels are already known beforehand
in the training phase.

Supervised learning basically tries to model the relationship between the inputs and their
corresponding outputs from the training data so that we would be able to predict output responses for new
data inputs based on the knowledge it gained earlier with regard to relationships and mappings between the
inputs and their target outputs. This is precisely why supervised learning methods are extensively used in
predictive analytics where the main objective is to predict some response for some input data that’s typically
fed into a trained supervised ML model. Supervised learning methods are of two major classes based on the
type of ML tasks they aim to solve.
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e (lassification
e  Regression

Let’s look at these two Machine Learning tasks and observe the subset of supervised learning methods
that are best suited for tackling these tasks.

Classification

The classification based tasks are a sub-field under supervised Machine Learning, where the key objective
is to predict output labels or responses that are categorical in nature for input data based on what the model
has learned in the training phase. Output labels here are also known as classes or class labels are these are
categorical in nature meaning they are unordered and discrete values. Thus, each output response belongs
to a specific discrete class or category.

Suppose we take a real-world example of predicting the weather. Let’s keep it simple and say we
are trying to predict if the weather is sunny or rainy based on multiple input data samples consisting of
attributes or features like humidity, temperature, pressure, and precipitation. Since the prediction can be
either sunny or rainy, there are a total of two distinct classes in total; hence this problem can also be termed
as a binary classification problem. Figure 1-15 depicts the binary weather classification task of predicting
weather as either sunny or rainy based on training the supervised model on input data samples having
feature vectors, (precipitation, humidity, pressure, and temperature) for each data sample/observation and
their corresponding class labels as either sunny or rainy.

Precipitation | Humidity Pressure | Temperature Output Labels

o,

Corresponds
to

Training Data

Training

Precipitation | Humidity Pressure | Temperature Predicted Label
P Supervised Model —— Predict OR &=

New Previously Unseen Input

Figure 1-15. Supervised learning: binary classification for weather prediction

A task where the total number of distinct classes is more than two becomes a multi-class classification
problem where each prediction response can be any one of the probable classes from this set. A simple
example would be trying to predict numeric digits from scanned handwritten images. In this case it becomes
a 10-class classification problem because the output class label for any image can be any digit from 0 - 9. In
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both the cases, the output class is a scalar value pointing to one specific class. Multi-label classification tasks
are such that based on any input data sample, the output response is usually a vector having one or more
than one output class label. A simple real-world problem would be trying to predict the category of a news
article that could have multiple output classes like news, finance, politics, and so on.

Popular classification algorithms include logistic regression, support vector machines, neural networks,
ensembles like random forests and gradient boosting, K-nearest neighbors, decision trees, and many more.

Regression

Machine Learning tasks where the main objective is value estimation can be termed as regression tasks.
Regression based methods are trained on input data samples having output responses that are continuous
numeric values unlike classification, where we have discrete categories or classes. Regression models
make use of input data attributes or features (also called explanatory or independent variables) and their
corresponding continuous numeric output values (also called as response, dependent, or outcome variable)
to learn specific relationships and associations between the inputs and their corresponding outputs. With
this knowledge, it can predict output responses for new, unseen data instances similar to classification but
with continuous numeric outputs.

One of the most common real-world examples of regression is prediction of house prices. You can build
a simple regression model to predict house prices based on data pertaining to land plot areas in square feet.
Figure 1-16 shows two possible regression models based on different methods to predict house prices based
on plot area.

Linear Regression Multiple Regression (Polynomial)

3

<
.

House Price ($)
House Price ()

xw

Plot Area (Sq. feet) X Plot Area (Sq. feet)

Figure 1-16. Supervised learning: regression models for house price prediction

The basic idea here is that we try to determine if there is any relationship or association between the
data feature plot area and the outcome variable, which is the house price and is what we want to predict.
Thus once we learn this trend or relationship depicted in Figure 1-16, we can predict house prices in the
future for any given plot of land. If you have noticed the figure closely, we depicted two types of models on
purpose to show that there can be multiple ways to build a model on your training data. The main objective
is to minimize errors during training and validating the model so that it generalized well, does not overfit or
get biased only to the training data and performs well in future predictions.

Simple linear regression models try to model relationships on data with one feature or explanatory
variable x and a single response variable y where the objective is to predict y. Methods like ordinary least
squares (OLS) are typically used to get the best linear fit during model training.
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Multiple regression is also known as multivariable regression. These methods try to model data where we
have one response output variable y in each observation but multiple explanatory variables in the form of a
vector Xinstead of a single explanatory variable. The idea is to predict y based on the different features present
in X. A real-world example would be extending our house prediction model to build a more sophisticated model
where we predict the house price based on multiple features instead of just plot area in each data sample. The
features could be represented in a vector as plot area, number of bedrooms, number of bathrooms, total floors,
furnished, or unfurnished. Based on all these attributes, the model tries to learn the relationship between each
feature vector and its corresponding house price so that it can predict them in the future.

Polynomial regression is a special case of multiple regression where the response variable y is modeled
as an nth degree polynomial of the input feature x. Basically it is multiple regression, where each feature in
the input feature vector is a multiple of x. The model on the right in Figure 1-16 to predict house prices is a
polynomial model of degree 2.

Non-linear regression methods try to model relationships between input features and outputs based on
a combination of non-linear functions applied on the input features and necessary model parameters.

Lasso regression is a special form of regression that performs normal regression and generalizes the
model well by performing regularization as well as feature or variable selection. Lasso stands for least absolute
shrinkage and selection operator. The L1 norm is typically used as the regularization term in lasso regression.

Ridge regression is another special form of regression that performs normal regression and generalizes
the model by performing regularization to prevent overfitting the model. Typically the L2 norm is used as the
regularization term in ridge regression.

Generalized linear models are generic frameworks that can be used to model data predicting different
types of output responses, including continuous, discrete, and ordinal data. Algorithms like logistic
regression are used for categorical data and ordered probit regression for ordinal data.

Unsupervised Learning

Supervised learning methods usually require some training data where the outcomes which we are trying
to predict are already available in the form of discrete labels or continuous values. However, often we do not
have the liberty or advantage of having pre-labeled training data and we still want to extract useful insights
or patterns from our data. In this scenario, unsupervised learning methods are extremely powerful. These
methods are called unsupervised because the model or algorithm tries to learn inherent latent structures,
patterns and relationships from given data without any help or supervision like providing annotations in the
form of labeled outputs or outcomes.

Unsupervised learning is more concerned with trying to extract meaningful insights or information
from data rather than trying to predict some outcome based on previously available supervised training
data. There is more uncertainty in the results of unsupervised learning but you can also gain a lot of
information from these models that was previously unavailable to view just by looking at the raw data.
Often unsupervised learning could be one of the tasks involved in building a huge intelligence system. For
example, we could use unsupervised learning to get possible outcome labels for tweet sentiments by using
the knowledge of the English vocabulary and then train a supervised model on similar data points and their
outcomes which we obtained previously through unsupervised learning. There is no hard and fast rule with
regard to using just one specific technique. You can always combine multiple methods as long as they are
relevant in solving the problem. Unsupervised learning methods can be categorized under the following
broad areas of ML tasks relevant to unsupervised learning.

e  C(Clustering
¢  Dimensionality reduction
e  Anomaly detection

e  Association rule-mining
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We explore these tasks briefly in the following sections to get a good feel of how unsupervised learning
methods are used in the real world.

Clustering

Clustering methods are Machine Learning methods that try to find patterns of similarity and relationships
among data samples in our dataset and then cluster these samples into various groups, such that each group
or cluster of data samples has some similarity, based on the inherent attributes or features. These methods
are completely unsupervised because they try to cluster data by looking at the data features without any
prior training, supervision, or knowledge about data attributes, associations, and relationships.

Consider a real-world problem of running multiple servers in a data center and trying to analyze logs
for typical issues or errors. Our main task is to determine the various kinds of log messages that usually
occur frequently each week. In simple words, we want to group log messages into various clusters based on
some inherent characteristics. A simple approach would be to extract features from the log messages, which
would be in textual format and apply clustering on the same and group similar log messages together based
on similarity in content. Figure 1-17 shows how clustering would solve this problem. Basically we have raw
log messages to start with. Our clustering system would employ feature extraction to extract features from
text like word occurrences, phrase occurrences, and so on. Finally, a clustering algorithm like K-means or
hierarchical clustering would be employed to group or cluster messages based on similarity of their
inherent features.

Ghusters {rop stisibutes)

[ disx fait, erash, funl

[0 ram, memory, full, leak
DCW. processor, hang, cras -

CLUSTERING SYSTEM |:>

RAW LOG MESSAGES CLUSTERED LOG MESSAGES

Figure 1-17. Unsupervised learning: clustering log messages

It is quite clear from Figure 1-17 that our systems have three distinct clusters of log messages where
the first cluster depicts disk issues, the second cluster is about memory issues, and the third cluster is about
processor issues. Top feature words that helped in distinguishing the clusters and grouping similar data
samples (logs) together are also depicted in the figure. Of course, sometimes some features might be present
across multiple data samples hence there can be slight overlap of clusters too since this is unsupervised
learning. However, the main objective is always to create clusters such that elements of each cluster are near
each other and far apart from elements of other clusters.

There are various types of clustering methods that can be classified under the following major approaches.

e Centroid based methods such as K-means and K-medoids

e  Hierarchical clustering methods such as agglomerative and divisive (Ward’s, affinity
propagation)

e Distribution based clustering methods such as Gaussian mixture models

e  Density based methods such as dbscan and optics.
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Besides this, we have several methods that recently came into the clustering landscape, like birch
and clarans.

Dimensionality Reduction

Once we start extracting attributes or features from raw data samples, sometimes our feature space gets
bloated up with a humongous number of features. This poses multiple challenges including analyzing and
visualizing data with thousands or millions of features, which makes the feature space extremely complex
posing problems with regard to training models, memory, and space constraints. In fact this is referred

to as the “curse of dimensionality”. Unsupervised methods can also be used in these scenarios, where we
reduce the number of features or attributes for each data sample. These methods reduce the number of
feature variables by extracting or selecting a set of principal or representative features. There are multiple
popular algorithms available for dimensionality reduction like Principal Component Analysis (PCA), nearest
neighbors, and discriminant analysis. Figure 1-18 shows the output of a typical feature reduction process
applied to a Swiss Roll 3D structure having three dimensions to obtain a two-dimensional feature space for
each data sample using PCA.

Original 3-D data (Swiss Roll) 2-D data (after PCA)
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Figure 1-18. Unsupervised learning: dimensionality reduction

From Figure 1-18, it is quite clear that each data sample originally had three features or dimensions,
namely D(x1, x2, x3) and after applying PCA, we reduce each data sample from our dataset into two
dimensions, namely D’(z1, z2). Dimensionality reduction techniques can be classified in two major
approaches as follows.

¢  Feature Selection methods: Specific features are selected for each data sample from
the original list of features and other features are discarded. No new features are
generated in this process.

¢ Feature Extraction methods: We engineer or extract new features from the original
list of features in the data. Thus the reduced subset of features will contain newly
generated features that were not part of the original feature set. PCA falls under this
category.
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Anomaly Detection

The process of anomaly detection is also termed as outlier detection, where we are interested in finding

out occurrences of rare events or observations that typically do not occur normally based on historical

data samples. Sometimes anomalies occur infrequently and are thus rare events, and in other instances,
anomalies might not be rare but might occur in very short bursts over time, thus have specific patterns.
Unsupervised learning methods can be used for anomaly detection such that we train the algorithm

on the training dataset having normal, non-anomalous data samples. Once it learns the necessary data
representations, patterns, and relations among attributes in normal samples, for any new data sample, it
would be able to identify it as anomalous or a normal data point by using its learned knowledge. Figure 1-19
depicts some typical anomaly detection based scenarios where you could apply supervised methods like
one-class SVM and unsupervised methods like clustering, K-nearest neighbors, auto-encoders, and so on to
detect anomalies based on data and its features.
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Figure 1-19. Unsupervised learning: anomaly detection

Anomaly detection based methods are extremely popular in real-world scenarios like detection of
security attacks or breaches, credit card fraud, manufacturing anomalies, network issues, and many more.

Association Rule-Mining

Typically association rule-mining is a data mining method use to examine and analyze large transactional
datasets to find patterns and rules of interest. These patterns represent interesting relationships and
associations, among various items across transactions. Association rule-mining is also often termed as
market basket analysis, which is used to analyze customer shopping patterns. Association rules help in
detecting and predicting transactional patterns based on the knowledge it gains from training transactions.
Using this technique, we can answer questions like what items do people tend to buy together, thereby
indicating frequent item sets. We can also associate or correlate products and items, i.e., insights like people
who buy beer also tend to buy chicken wings at a pub. Figure 1-20 shows how a typical association rule-
mining method should work ideally on a transactional dataset.
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Figure 1-20. Unsupervised learning: association rule-mining

From Figure 1-20, you can clearly see that based on different customer transactions over a period of
time, we have obtained the items that are closely associated and customers tend to buy them together. Some
of these frequent item sets are depicted like {meat, eggs}, {milk, eggs} and so on. The criterion of determining
good quality association rules or frequent item sets is usually done using metrics like support, confidence,
and lift.

This is an unsupervised method, because we have no idea what the frequent item sets are or which
items are more strongly associated with which items beforehand. Only after applying algorithms like the
apriori algorithm or FP-growth, can we detect and predict products or items associated closely with each
other and find conditional probabilistic dependencies. We cover association rule-mining in further details in
Chapter 8.

Semi-Supervised Learning

The semi-supervised learning methods typically fall between supervised and unsupervised learning
methods. These methods usually use a lot of training data that’s unlabeled (forming the unsupervised
learning component) and a small amount of pre-labeled and annotated data (forming the supervised
learning component). Multiple techniques are available in the form of generative methods, graph based
methods, and heuristic based methods.

A simple approach would be building a supervised model based on labeled data, which is limited, and
then applying the same to large amounts of unlabeled data to get more labeled samples, train the model
on them and repeat the process. Another approach would be to use unsupervised algorithms to cluster
similar data samples, use human-in-the-loop efforts to manually annotate or label these groups, and then
use a combination of this information in the future. This approach is used in many image tagging systems.
Covering semi-supervised methods would be out of the present scope of this book.

Reinforcement Learning

The reinforcement learning methods are a bit different from conventional supervised or unsupervised
methods. In this context, we have an agent that we want to train over a period of time to interact with a
specific environment and improve its performance over a period of time with regard to the type of actions it
performs on the environment. Typically the agent starts with a set of strategies or policies for interacting with
the environment. On observing the environment, it takes a particular action based on a rule or policy and by
observing the current state of the environment. Based on the action, the agent gets a reward, which could be
beneficial or detrimental in the form of a penalty. It updates its current policies and strategies if needed and
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this iterative process continues till it learns enough about its environment to get the desired rewards. The
main steps of a reinforcement learning method are mentioned as follows.

1. Prepare agent with set of initial policies and strategy
Observe environment and current state
Select optimal policy and perform action
Get corresponding reward (or penalty)

Update policies if needed

@ @ » w DN

Repeat Steps 2 - 5 iteratively until agent learns the most optimal policies

Consider a real-world problem of trying to make a robot or a machine learn to play chess. In this case
the agent would be the robot and the environment and states would be the chessboard and the positions of
the chess pieces. A suitable reinforcement learning methodology is depicted in Figure 1-21.

< 1. Get Environment State <

' . > 2 Perform Action >

3. Get Reward or Penalty

AGENT

ENVIRONMENT

4. Update Action Policies (Learning)

Figure 1-21. Reinforcement learning: training a robot to play chess

The main steps involved for making the robot learn to play chess is pictorially depicted in Figure 1-21.
This is based on the steps discussed earlier for any reinforcement learning method. In fact, Google’s
DeepMind built the AlphaGo AI with components of reinforcement learning to train the system to play the
game of Go.

Batch Learning

Batch learning methods are also popularly known as offline learning methods. These are Machine Learning
methods that are used in end-to-end Machine Learning systems where the model is trained using all the
available training data in one go. Once training is done and the model completes the process of learning,
on getting a satisfactory performance, it is deployed into production where it predicts outputs for new data
samples. However, the model doesn’t keep learning over a period of time continuously with the new data.
Once the training is complete the model stops learning. Thus, since the model trains with data in one single
batch and it is usually a one-time procedure, this is known as batch or offline learning.
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We can always train the model on new data but then we would have to add new data samples along
with the older historical training data and again re-build the model using this new batch of data. If most of
the model building workflow has already been implemented, retraining a model would not involve a lot of
effort; however, with the data size getting bigger with each new data sample, the retraining process will start
consuming more processor, memory, and disk resources over a period of time. These are some points to be
considered when you are building models that would be running from systems having limited capacity.

Online Learning

Online learning methods work in a different way as compared to batch learning methods. The training

data is usually fed in multiple incremental batches to the algorithm. These data batches are also known as
mini-batches in ML terminology. However, the training process does not end there unlike batch learning
methods. It keeps on learning over a period of time based on new data samples which are sent to it for
prediction. Basically it predicts and learns in the process with new data on the fly without have to re-run the
whole model on previous data samples.

There are several advantages to online learning—it is suitable in real-world scenarios where the model
might need to keep learning and re-training on new data samples as they arrive. Problems like device failure
or anomaly prediction and stock market forecasting are two relevant scenarios. Besides this, since the data
is fed to the model in incremental mini-batches, you can build these models on commodity hardware
without worrying about memory or disk constraints since unlike batch learning methods, you do not need
to load the full dataset in memory before training the model. Besides this, once the model trains on datasets,
you can remove them since we do not need the same data again as the model learns incrementally and
remembers what it has learned in the past.

One of the major caveats in online learning methods is the fact that bad data samples can affect the
model performance adversely. All ML methods work on the principle of “Garbage In Garbage Out” Hence
if you supply bad data samples to a well-trained model, it can start learning relationships and patterns that
have no real significance and this ends up affecting the overall model performance. Since online learning
methods keep learning based on new data samples, you should ensure proper checks are in place to
notify you in case suddenly the model performance drops. Also suitable model parameters like learning
rate should be selected with care to ensure the model doesn’t overfit or get biased based on specific data
samples.

Instance Based Learning

There are various ways to build Machine Learning models using methods that try to generalize based

on input data. Instance based learning involves ML systems and methods that use the raw data points
themselves to figure out outcomes for newer, previously unseen data samples instead of building an explicit
model on training data and then testing it out.

A simple example would be a K-nearest neighbor algorithm. Assuming k = 3, we have our initial training
data. The ML method knows the representation of the data from the features, including its dimensions,
position of each data point, and so on. For any new data point, it will use a similarity measure (like cosine or
Euclidean distance) and find the three nearest input data points to this new data point. Once that is decided,
we simply take a majority of the outcomes for those three training points and predict or assign it as the
outcome label/response for this new data point. Thus, instance based learning works by looking at the input
data points and using a similarity metric to generalize and predict for new data points.
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Model Based Learning

The model based learning methods are a more traditional ML approach toward generalizing based on
training data. Typically an iterative process takes place where the input data is used to extract features and
models are built based on various model parameters (known as hyperparameters). These hyperparameters
are optimized based on various model validation techniques to select the model that generalizes best on the
training data and some amount of validation and test data (split from the initial dataset). Finally, the best
model is used to make predictions or decisions as and when needed.

The CRISP-DM Process Model

The CRISP-DM model stands for CRoss Industry Standard Process for Data Mining. More popularly known
by the acronym itself, CRISP-DM is a tried, tested, and robust industry standard process model followed for
data mining and analytics projects. CRISP-DM clearly depicts necessary steps, processes, and workflows for
executing any project right from formalizing business requirements to testing and deploying a solution to
transform data into insights. Data Science, Data Mining, and Machine Learning are all about trying to run
multiple iterative processes to extract insights and information from data. Hence we can say that analyzing
data is truly both an art as well as a science, because it is not always about running algorithms without
reason; a lot of the major effort involves in understanding the business, the actual value of the efforts being
invested, and proper methods to articulate end results and insights.

The CRISP-DM model tells us that for building an end-to-end solution for any analytics project or
system, there are a total of six major steps or phases, some of them being iterative. Just like we have a
software development lifecycle with several major phases or steps for a software development project, we
have a data mining or analysis lifecycle in this scenario. Figure 1-22 depicts the data mining lifecycle with the
CRISP-DM model.
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Figure 1-22. The CRISP-DM model depicting the data mining lifecycle

Figure 1-22 clearly shows there are a total of six major phases in the data mining lifecycle and the
direction to proceed is depicted with arrows. This model is not a rigid imposition but rather a framework to
ensure you are on the right track when going through the lifecycle of any analytics project. In some scenarios
like anomaly detection or trend analysis, you might be more interested in data understanding, exploration,
and visualization rather than intensive modeling. Each of the six phases is described in detail as follows.

Business Understanding

This is the initial phase before kick starting any project in full flow. However this is one of the most important
phases in the lifecycle! The main objective here starts with understanding the business context and
requirements for the problem to be solved at hand. Definition of business requirements is crucial to convert
the business problem into a data mining or analytics problem and to set expectations and success criteria
for both the customer as well as the solution task force. The final deliverable from this phase would be a
detailed plan with the major milestones of the project and expected timelines along with success criteria,
assumptions, constraints, caveats, and challenges.
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Define Business Problem

The first task in this phase would be to start by understanding the business objective of the problem to
be solved and build a formal definition of the problem. The following points are crucial toward clearly
articulating and defining the business problem.

Get business context of the problem to be solved, assess the problem with the help of
domain, and subject matter experts (SMEs).

Describe main pain points or target areas for business objective to be solved.

Understand the solutions that are currently in place, what is lacking, and what needs
to be improved.

Define the business objective along with proper deliverables and success criteria
based on inputs from business, data scientists, analysts, and SMEs.

Assess and Analyze Scenarios

Once the business problem is defined clearly, the main tasks involved would be to analyze and assess the
current scenario with regard to the business problem definition. This includes looking at what is currently
available and making a note of various items required ranging from resources, personnel, to data. Besides
this, proper assessment of risks and contingency plans need to be discussed. The main steps involved in the
assessment stage here are mentioned as follows.

Assess and analyze what is currently available to solve the problem from various
perspectives including data, personnel, resource time, and risks.

Build out a brief report of key resources needed (both hardware and software) and
personnel involved. In case of any shortcomings, make sure to call them out as
necessary.

Discuss business objective requirements one by one and then identify and record
possible assumptions and constraints for each requirement with the help of SMEs.

Verify assumptions and constraints based on data available (a lot of this might be
answered only after detailed analysis, hence it depends on the problem to be solved
and the data available).

Document and report possible risks involved in the project including timelines,
resources, personnel, data, and financial based concerns. Build contingency plans
for each possible scenario.

Discuss success criteria and try to document a comparative return on investment or
cost versus valuation analysis if needed. This just needs to be a rough benchmark to
make sure the project aligns with the company or business vision.
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Define Data Mining Problem

This could be defined as the pre-analysis phase, which starts once the success criteria and the business
problem is defined and all the risks, assumptions and constraints have been documented. This phase involves
having detailed technical discussions with your analysts, data scientists, and developers and keeping the
business stakeholders in sync. The following are the key tasks that are to be undertaken in this phase.

e  Discuss and document possible Machine Learning and data mining methods
suitable for the solution by assessing possible tools, algorithms, and techniques.

e  Develop high-level designs for end-to-end solution architecture.

e  Record notes on what the end output from the solution will be and how will it
integrate with existing business components.

e  Record success evaluation criteria from a Data Science standpoint. A simple example
could be making sure that predictions are at least 80% accurate.

Project Plan

This is the final stage under the business understanding phase. A project plan is generally created consisting

of the entire major six phases in the CRISP-DM model, estimated timelines, allocated resources and

personnel, and possible risks and contingency plans. Care is taken to ensure concrete high-level deliverables

and success criteria are defined for each phase and iterative phases like modeling are highlighted with

annotations like feedback based on SMEs might need models to be rebuilt and retuned before deployment.
You should be ready for the next step once you have the following points covered.

e Definition of business objectives for the problem
e  Success criteria for business and data mining efforts
e  Budget allocation and resource planning

e  C(lear, well-defined Machine Learning and data mining methodologies to be
followed, including high-level workflows from exploration to deployment

e  Detailed project plan with all six phases of the CRISP-DM model defined with
estimated timelines and risks

Data Understanding

The second phase in the CRISP-DM process involves taking a deep dive into the data available and
understanding it in further detail before starting the process of analysis. This involves collecting the data,
describing the various attributes, performing some exploratory analysis of the data, and keeping tabs on data
quality. This phase should not be neglected because bad data or insufficient knowledge about available data
can have cascading adverse effects in the later stages in this process.

Data Collection

This task is undertaken to extract, curate, and collect all the necessary data needed for your business
objective. Usually this involves making use of the organizations historical data warehouses, data marts, data
lakes and so on. An assessment is done based on the existing data available in the organization and if there is
any need for additional data. This can be obtained from the web, i.e., open data sources or it can be obtained
from other channels like surveys, purchases, experiments and simulations. Detailed documents should keep
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track of all datasets which would be used for analysis and additional data sources if any are necessary. This
document can be combined with the subsequent stages of this phase.

Data Description

Data description involves carrying out initial analysis on the data to understand more about the data, its
source, volume, attributes, and relationships. Once these details are documented, any shortcomings if
noted should be informed to relevant personnel. The following factors are crucial to building a proper data
description document.

e  Datasources (SQL, NoSQL, Big Data), record of origin (ROO), record of
reference(ROR)

e  Data volume (size, number of records, total databases, tables)

e Data attributes and their description (variables, data types)

e  Relationship and mapping schemes (understand attribute representations)
e  Basic descriptive statistics (mean, median, variance)

e  Focus on which attributes are important for the business

Exploratory Data Analysis

Exploratory data analysis, also known as EDA, is one of the first major analysis stages in the lifecycle. Here,
the main objective is to explore and understand the data in detail. You can make use of descriptive statistics,
plots, charts, and visualizations to look at the various data attributes, find associations and correlations and
make a note of data quality problems if any. Following are some of the major tasks in this stage.

e  Explore, describe, and visualize data attributes
e  Select data and attributes subsets that seem most important for the problem
e  Extensive analysis to find correlations and associations and test hypotheses

e  Note missing data points if any

Data Quality Analysis

Data quality analysis is the final stage in the data understanding phase where we analyze the quality of data
in our datasets and document potential errors, shortcomings, and issues that need to be resolved before
analyzing the data further or starting modeling efforts. The main focus on data quality analysis involves the
following.

e  Missing values
e Inconsistent values
¢  Wrong information due to data errors (manual/automated)

e  Wrong metadata information
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Data Preparation

The third phase in the CRISP-DM process takes place after gaining enough knowledge on the business
problem and relevant dataset. Data preparation is mainly a set of tasks that are performed to clean, wrangle,
curate, and prepare the data before running any analytical or Machine Learning methods and building
models. We will briefly discuss some of the major tasks under the data preparation phase in this section. An
important point to remember here is that data preparation usually is the most time consuming phase in the
data mining lifecycle and often takes 60% to 70% time in the overall project. However this phase should be
taken very seriously because, like we have discussed multiple times before, bad data will lead to bad models
and poor performance and results.

Data Integration

The process of data integration is mainly done when we have multiple datasets that we might want to
integrate or merge. This can be done in two ways. Appending several datasets by combining them, which
is typically done for datasets having the same attributes. Merging several datasets together having different
attributes or columns, by using common fields like keys.

Data Wrangling

The process of data wrangling or data munging involves data processing, cleaning, normalization, and
formatting. Data in its raw form is rarely consumable by Machine Learning methods to build models. Hence
we need to process the data based on its form, clean underlying errors and inconsistencies, and format it
into more consumable formats for ML algorithms. Following are the main tasks relevant to data wrangling.

e  Handling missing values (remove rows, impute missing values)

e Handling data inconsistencies (delete rows, attributes, fix inconsistencies)
e  Fixing incorrect metadata and annotations

e Handling ambiguous attribute values

e  Curating and formatting data into necessary formats (CSV, Json, relational)

Attribute Generation and Selection

Data is comprised of observations or samples (rows) and attributes or features (columns). The process of
attribute generation is also known as feature extraction and engineering in Machine Learning terminology.
Attribute generation is basically creating new attributes or variables from existing attributes based on some
rules, logic, or hypothesis. A simple example would be creating a new numeric variable called age based on
two date-time fields—current_date and birth_date—for a dataset of employees in an organization. There
are several techniques with regard to attribute generation that we discuss in future chapters.

Attribute selection is basically selecting a subset of features or attributes from the dataset based on
parameters like attribute importance, quality, relevancy, assumptions, and constraints. Sometimes even
Machine Learning methods are used to select relevant attributes based on the data. This is popularly known
as feature selection in Machine Learning terminology.
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Modeling

The fourth phase in the CRISP-DM process is the core phase in the process where most of the analysis

takes place with regard to using clean, formatted data and its attributes to build models to solve business
problems. This is an iterative process, as depicted in Figure 1-22 earlier, along with model evaluation and all
the preceding steps leading up to modeling. The basic idea is to build multiple models iteratively trying to
get to the best model that satisfies our success criteria, data mining objectives, and business objectives. We
briefly talk about some of the major stages relevant to modeling in this section.

Selecting Modeling Techniques

In this stage, we pick up a list of relevant Machine Learning and data mining tools, frameworks, techniques,
and algorithms listed in the “Business Understanding” phase. Techniques that are proven to be robust

and useful in solving the problem are usually selected based on inputs and insights from data analysts and
data scientists. These are mainly decided by the current data available, business goals, data mining goals,
algorithm requirements, and constraints.

Model Building

The process of model building is also known as training the model using data and features from our dataset.
A combination of data (features) and Machine Learning algorithms together give us a model that tries

to generalize on the training data and give necessary results in the form of insights and/or predictions.
Generally various algorithms are used to try out multiple modeling approaches on the same data to solve
the same problem to get the best model that performs and gives outputs that are the closest to the business
success criteria. Key things to keep track here are the models created, model parameters being used, and
their results.

Model Evaluation and Tuning

In this stage, we evaluate each model based on several metrics like model accuracy, precision, recall,

F1 score, and so on. We also tune the model parameters based on techniques like grid search and cross
validation to get to the model that gives us the best results. Tuned models are also matched with the data
mining goals to see if we are able to get the desired results as well as performance. Model tuning is also
termed as hyperparameter optimization in the Machine Learning world.

Model Assessment

Once we have models that are providing desirable and relevant results, a detailed assessment of the model is
performed based on the following parameters.

e  Model performance is in line with defined success criteria
e  Reproducible and consistent results from models

e  Scalability, robustness, and ease of deployment

e  Future extensibility of the model

e Model evaluation gives satisfactory results
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Evaluation

The fifth phase in the CRISP-DM process takes place once we have the final models from the modeling
phase that satisfy necessary success criteria with respect to our data mining goals and have the desired
performance and results with regard to model evaluation metrics like accuracy. The evaluation phase
involves carrying out a detailed assessment and review of the final models and the results which are
obtained from them. Some of the main points that are evaluated in this section are as follows.

e Ranking final models based on the quality of results and their relevancy based on
alignment with business objectives

e  Anyassumptions or constraints that were invalidated by the models

e  Cost of deployment of the entire Machine Learning pipeline from data extraction
and processing to modeling and predictions

e  Any pain points in the whole process? What should be recommended? What should
be avoided?

e Data sufficiency report based on results
e  Final suggestions, feedback, and recommendations from solutions team and SMEs

Based on the report formed from these points, after a discussion, the team can decide whether they
want to proceed to the next phase of model deployment or a full reiteration is needed, starting from business
and data understanding to modeling.

Deployment

The final phase in the CRISP-DM process is all about deploying your selected models to production and
making sure the transition from development to production is seamless. Usually most organizations follow
a standard path-to-production methodology. A proper plan for deployment is built based on resources
required, servers, hardware, software, and so on. Models are validated, saved, and deployed on necessary
systems and servers. A plan is also put in place for regular monitoring and maintenance of models to
continuously evaluate their performance, check for results and their validity, and retire, replace, and update
models as and when needed.

Building Machine Intelligence

The objective of Machine Learning, data mining, or artificial intelligence is to make our lives easier,
automate tasks, and take better decisions. Building machine intelligence involves everything we have
learned until now starting from Machine Learning concepts to actually implementing and building models
and using them in the real world. Machine intelligence can be built using non-traditional computing
approaches like Machine Learning. In this section, we establish full-fledged end-to-end Machine Learning
pipelines based on the CRISP-DM model, which will help us solve real-world problems by building machine
intelligence using a structured process.

Machine Learning Pipelines

The best way to solve a real-world Machine Learning or analytics problem is to use a Machine Learning
pipeline starting from getting your data to transforming it into information and insights using Machine
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Learning algorithms and techniques. This is more of a technical or solution based pipeline and it assumes
that several aspects of the CRISP-DM model are already covered, including the following points.

e Business and data understanding
e  ML/DM technique selection
° Risk, assumptions, and constraints assessment

A Machine Learning pipeline will mainly consist of elements related to data retrieval and extraction,
preparation, modeling, evaluation, and deployment. Figure 1-23 shows a high-level overview of a standard
Machine Learning pipeline with the major phases highlighted in their blocks.

Datasets Data Retrieval
Data Feature Feature
P ing & Extraction & Scaling & ) Model
Wrangling Engineering Selection —»  Modeling Evaluation & Repicyet &
: Monitoring
Tuning
Data Preparation

t— Re-iterate till satisfactory model perf

Figure 1-23. A standard Machine Learning pipeline

From Figure 1-23, it is evident that there are several major phases in the Machine Learning pipeline and
they are quite similar to the CRISP-DM process model, which is why we talked about it in detail earlier. The
major steps in the pipeline are briefly mentioned here.

e Dataretrieval: This is mainly data collection, extraction, and acquisition from
various data sources and data stores. We cover data retrieval mechanisms in detail in
Chapter 3, “Processing, Wrangling, and Visualizing Data”.

e Data preparation: In this step, we pre-process the data, clean it, wrangle it, and
manipulate it as needed. Initial exploratory data analysis is also carried out.
Next steps involved extracting, engineering, and selecting features/attributes from
the data.

e  Data processing and wrangling: Mainly concerned with data processing,
cleaning, munging, wrangling and performing initial descriptive and
exploratory data analysis. We cover this in further details with hands-on
examples in Chapter 3, “Processing, Wrangling, and Visualizing Data”.

e Feature extraction and engineering: Here, we extract important features or
attributes from the raw data and even create or engineer new features from
existing features. Details on various feature engineering techniques are covered
in Chapter 4, “Feature Engineering and Selection”.
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e Feature scaling and selection: Data features often need to be normalized and
scaled to prevent Machine Learning algorithms from getting biased. Besides
this, often we need to select a subset of all available features based on feature
importance and quality. This process is known as feature selection. Chapter 4,
“Feature Engineering and Selection,” covers these aspects.

e  Modeling: In the process of modeling, we usually feed the data features to a Machine
Learning method or algorithm and train the model, typically to optimize a specific
cost function in most cases with the objective of reducing errors and generalizing the
representations learned from the data. Chapter 5, “Building, Tuning, and Deploying
Models,” covers the art and science behind building Machine Learning models.

e  Model evaluation and tuning: Built models are evaluated and tested on validation
datasets and, based on metrics like accuracy, F1 score, and others, the model
performance is evaluated. Models have various parameters that are tuned in a
process called hyperparameter optimization to get models with the best and optimal
results. Chapter 5, “Building, Tuning, and Deploying Models,” covers these aspects.

¢ Deployment and monitoring: Selected models are deployed in production and
are constantly monitored based on their predictions and results. Details on model
deployment are covered in Chapter 5, “Building, Tuning and Deploying Models”

Supervised Machine Learning Pipeline

By now we know that supervised Machine Learning methods are all about working with supervised
labeled data to train models and then predict outcomes for new data samples. Some processes like feature
engineering, scaling, and selection should always remain constant so that the same features are used for
training the model and the same features are extracted from new data samples to feed the model in the
prediction phase. Based on our earlier generic Machine Learning pipeline, Figure 1-24 shows a standard
supervised Machine Learning pipeline.

1 ¢ Machine
Hp i Training Leaming
Features Algorithm
TRAINING Feature 3
DetaProcessing | ¢ ieerings [ Feature
PREDICTION & Wrangling Scaling Selection Supervised ML
/ Predicted
|I Hp - ey Outcome
Features Labels

Figure 1-24. Supervised Machine Learning pipeline

You can clearly see the two phases of model training and prediction highlighted in Figure 1-24.
Also, based on what we had mentioned earlier, the same sequence of data processing, wrangling, feature
engineering, scaling, and selection is used for both data used in training the model and future data samples
for which the model predicts outcomes. This is a very important point that you must remember whenever
you are building any supervised model. Besides this, as depicted, the model is a combination of a Machine

54


http://dx.doi.org/10.1007/978-1-4842-3207-1_4
http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_5

CHAPTER 1 © MACHINE LEARNING BASICS

Learning (supervised) algorithm and training data features and corresponding labels. This model will take
features from new data samples and output predicted labels in the prediction phase.

Unsupervised Machine Learning Pipeline

Unsupervised Machine Learning is all about extracting patterns, relationships, associations, and clusters
from data. The processes related to feature engineering, scaling and selection are similar to supervised
learning. However there is no concept of pre-labeled data here. Hence the unsupervised Machine Learning
pipeline would be slightly different in contrast to the supervised pipeline. Figure 1-25 depicts a standard
unsupervised Machine Learning pipeline.

- Machine

Training i i > Training Learning

Data Features Agorithm
TRAINING : Feature

Data P Enginesring &
o Selection Unsupervised

& Wrangling Scaling
ML Model ]
Clusters,
Patterns,
L La New Association
Features Rules

Figure 1-25. Unsupervised Machine Learning pipeline

PREDICTION

Y

Figure 1-25 clearly depicts that no supervised labeled data is used for training the model. With the
absence of labels, we just have training data that goes through the same data preparation phase as in the
supervised learning pipeline and we build our unsupervised model with an unsupervised Machine Learning
algorithm and training features. In the prediction phase, we extract features from new data samples and pass
them through the model which gives relevant results according to the type of Machine Learning task we are
trying to perform, which can be clustering, pattern detection, association rules, or dimensionality reduction.

Real-World Case Study: Predicting Student Grant
Recommendations

Let’s take a step back from what we have learned so far! The main objective here was to gain a solid grasp
over the entire Machine Learning landscape, understand crucial concepts, build on the basic foundations,
and understand how to execute Machine Learning projects with the help of Machine Learning pipelines
with the CRISP-DM process model being the source of all inspiration. Let’s put all this together to take a
very basic real-world case study by building a supervised Machine Learning pipeline on a toy dataset. Our
major objective is as follows. Given that you have several students with multiple attributes like grades,
performance, and scores, can you build a model based on past historical data to predict the chance of the
student getting a recommendation grant for a research project?

This will be a quick walkthrough with the main intent of depicting how to build and deploy a real-world
Machine Learning pipeline and perform predictions. This will also give you a good hands-on experience to
get started with Machine Learning. Do not worry too much if you don’t understand the details of each and
every line of code; the subsequent chapters cover all the tools, techniques, and frameworks used here in
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detail. We will be using Python 3.5 in this book; you can refer to Chapter 2, “The Python Machine Learning
Ecosystem” to understand more about Python and the various tools and frameworks used in Machine
Learning. You can follow along with the code snippets in this section or open the Predicting Student
Recommendation Machine Learning Pipeline.ipynb jupyter notebook by running jupyter notebook

in the command line/terminal in the same directory as this notebook. You can then run the relevant code
snippets in the notebook from your browser. Chapter 2 covers jupyter notebooks in detail.

Objective

You have historical student performance data and their grant recommendation outcomes in the form of
a comma separated value file named student_records.csv. Each data sample consists of the following
attributes.

e  Name (the student name)

e OverallGrade (overall grade obtained)

e Obedient (whether they were diligent during their course of stay)
e  ResearchScore (marks obtained in their research work)

e ProjectScore (marks obtained in the project)

e  Recommend (whether they got the grant recommendation)

You main objective is to build a predictive model based on this data such that you can predict for any
future student whether they will be recommended for the grant based on their performance attributes.

Data Retrieval

Here, we will leverage the pandas framework to retrieve the data from the CSV file. The following snippet
shows us how to retrieve the data and view it.

In [1]: import pandas as pd
..t # turn of warning messages

: pd.options.mode.chained assignment = None # default='warn'

1 # get data

..t df = pd.read csv('student records.csv')
condf
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Out(1l]:
. Name | OverallGrade | Obedlent | ResearchScore | ProjectScore | Recommend
O|Henry (A Y 90 85 Yes
1|John C N 85 51 Yes
2|David |F N 10 17 No
3|Holmes (B Y 75 Al No
4| Marvin |E N 20 30 No
5(Simon (A Y 92 79 Yes
6| Robert (B Y 60 59 No
7|Trent |C Y 75 33 No

Figure 1-26. Raw data depicting student records and their recommendations

Now that we can see data samples showing records for each student and their corresponding
recommendation outcomes in Figure 1-26, we will perform necessary tasks relevant to data preparation.

Data Preparation

Based on the dataset we saw earlier, we do not have any data errors or missing values, hence we will mainly

focus on feature engineering and scaling in this section.

Feature Extraction and Engineering

Let’s start by extracting the existing features from the dataset and the outcomes in separate variables. The

following snippet shows this process. See Figures 1-27 and 1-28.

In [2]: # get features and corresponding outcomes
...: feature _names = ['OverallGrade', 'Obedient', 'ResearchScore’,
"ProjectScore’]
..t training features = df[feature names]

: outcome_name = ['Recommend']
: outcome_labels = df[outcome_name]

In [3]: # view features
..: training_features
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OQut[3]:
OverallGrade | Obedlent | ResearchScore | ProjectScore
0|A Y 90 85
1(C N 85 51
2(F N 10 17
3B Y 75 4
4|E N 20 30
5/A Y 92 79
6|B Y 60 59
7(C Y 75 33
Figure 1-27. Dataset features
In [4]: # view outcome labels
: outcome_labels
Out[4]:
Recommend
0|Yes
1|Yes
2| No
3| No
4| No
5|Yes
6| No
7| No

Figure 1-28. Dataset recommendation outcome labels for each student
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Now that we have extracted our initial available features from the data and their corresponding outcome
labels, let’s separate out our available features based on their type (numerical and categorical). Types of
feature variables are covered in more detail in Chapter 3, “Processing, Wrangling, and Visualizing Data”.

In [5]: # list down features based on type
..: numeric_feature names = ['ResearchScore', 'ProjectScore’]
... categoricial_feature_names = ['OverallGrade', 'Obedient']

We will now use a standard scalar from scikit-1learn to scale or normalize our two numeric score-
based attributes using the following code.

In [6]: from sklearn.preprocessing import StandardScaler
..t ss = StandardScaler()

: # fit scaler on numeric features
: ss.fit(training features[numeric_feature names])

..: # scale numeric features now
..t training features[numeric_feature names] =
ss.transform(training features[numeric_feature names])

: # view updated featureset
..t training_features

it[6]:
e OverallGrade | Obedient | ResearchScore | ProjectScore
0O|A Y 0.899583 1.376650
1(C N 0.730648 -0.091777
2|F N -1.803390 -1.560203
3B Y 0.392776 0.772004
4|E N -1.465519 -0.998746
5|A Y 0.967158 1.117516
6|B Y -0.114032 0.253735
7(C Y 0.392776 -0.869179

Figure 1-29. Feature set with scaled numeric attributes
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Now that we have successfully scaled our numeric features (see Figure 1-29), let’s handle our categorical
features and carry out the necessary feature engineering needed based on the following code.

In [7]: training_features = pd.get dummies(training features,
columns=categoricial feature names)
...t # view newly engineering features

...: training_features
Out[
Proj o _A| OverallGrade_B | Over c ade_E | OverallGrade_F | Obedlent_N | Obedlent_Y
1| 0.899583 1.376650 1 0 0 o o ] 1
| 0.730648 -0.001777 0 0 1 0 0 1 0
1| -1.803390 -1.560203 o o 0 o 1 1 o
¥ 0.392776 0.772004 o 1 0 o o 0 1
| -1.465519 -0.998746 1] 1} 0 1 o 1 0
3| 0.967158 1.117516 1 0 0 o o o 1
i(-0.114032 0.253735 0 1 0 o 0 o 1
" 0.392776 -0.868179 o o 1 o o 0 1

Figure 1-30. Feature set with engineered categorical variables

In [8]: # get list of new categorical features
.: categorical _engineered_features = list(set(training features.columns) -
set(numeric_feature names))

Figure 1-30 shows us the updated feature set with the newly engineered categorical variables. This
process is also known as one hot encoding.

Modeling

We will now build a simple classification (supervised) model based on our feature set by using the logistic
regression algorithm. The following code depicts how to build the supervised model.

In [9]: from sklearn.linear model import LogisticRegression
.t import numpy as np

.1 # fit the model

: 1r = LogisticRegression()

: model = lr.fit(training features,
np.array(outcome_labels['Recommend']))

.t # view model parameters

...: model
Out[9]: LogisticRegression(C=1.0, class_weight=None, dual=False,

fit_intercept=True, intercept scaling=1, max_iter=100,
multi class='ovr', n_jobs=1, penalty='12",
random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm start=False)

Thus, we now have our supervised learning model based on the logistic regression model with
L2 regularization, as you can see from the parameters in the previous output.
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Model Evaluation

Typically model evaluation is done based on some holdout or validation dataset that is different from the
training dataset to prevent overfitting or biasing the model. Since this is an example on a toy dataset, let’s
evaluate the performance of our model on the training data using the following snippet.

In [10]: # simple evaluation on training data
...t pred_ labels = model.predict(training features)
...t actual labels = np.array(outcome labels['Recommend'])

: # evaluate model performance
: from sklearn.metrics import accuracy score
: from sklearn.metrics import classification_report

...t print('Accuracy:', float(accuracy score(actual labels,
pred labels))*100, '%")
¢ print('Classification Stats:")
: print(classification_report(actual labels, pred labels))

Accuracy: 100.0 %
Classification Stats:
precision recall fi-score support

No 1.00 1.00 1.00 5
Yes 1.00 1.00 1.00 3
avg / total 1.00 1.00 1.00 8

Thus you can see the various metrics that we had mentioned earlier, like accuracy, precision, recall, and
F1 score depicting the model performance. We talk about these metrics in detail in Chapter 5, “Building,
Tuning, and Deploying Models”.

Model Deployment

We built our first supervised learning model, and to deploy this model typically in a system or server, we
need to persist the model. We also need to save the scalar object we used to scale the numerical features
since we use it to transform the numeric features of new data samples. The following snippet depicts a way
to store the model and scalar objects.

In [11]: from sklearn.externals import joblib
...: import os
...: # save models to be deployed on your server
..t if not os.path.exists('Model"):
: os.mkdir('Model")
...t if not os.path.exists('Scaler'):
os.mkdir('Scaler")

.: joblib.dump(model, r'Model/model.pickle")
: joblib.dump(ss, r'Scaler/scaler.pickle")

These files can be easily deployed on a server with necessary code to reload the model and predict new
data samples, which we will see in the upcoming sections.
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Prediction in Action

We are now ready to start predicting with our newly built and deployed model! To start predictions, we need
to load our model and scalar objects into memory. The following code helps us do this.

In [12]: # load model and scaler objects
: model = joblib.load(r'Model/model.pickle")
...t scaler = joblib.load(r'Scaler/scaler.pickle")

We have some sample new student records (for two students) for which we want our model to predict if
they will get the grant recommendation. Let’s retrieve and view this data using the following code.

In [13]: ## data retrieval
...t new_data = pd.DataFrame([{'Name': 'Nathan', 'OverallGrade': 'F',
'Obedient': 'N', 'ResearchScore': 30, 'ProjectScore': 20},
{'Name': 'Thomas', 'OverallGrade': 'A’,
'Obedient': 'Y', 'ResearchScore': 78, 'ProjectScore': 80}])
: new_data = new_data[['Name', 'OverallGrade', 'Obedient’,
'ResearchScore', 'ProjectScore']]

...: new_data
Out[13]:
Name | OverallGrade | Obedient | ResearchScore | ProjectScore
0| Nathan |F N 30 20
1| Thomas|A Y 78 80

Figure 1-31. New student records

We will now carry out the tasks relevant to data preparation—feature extraction, engineering, and
scaling—in the following code snippet.

In [14]: ## data preparation
...: prediction features = new data[feature names]

: # scaling
: prediction features[numeric_feature names] =
scaler.transform(prediction_features[numeric_feature names])

...: # engineering categorical variables
...: prediction features = pd.get dummies(prediction features,

columns=categoricial feature names)

: # view feature set
..: prediction_features
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Out[14]:

ResearchScore | ProjectScore | OverallGrade_A | OverallGrade_F| Obedlent_N|Obedlent Y

=

-1.127647 -1.430636 o 1 1 0
0.494137 1.160705 1 o 0 1

-

Figure 1-32. Updated feature set for new students

We now have the relevant features for the new students! However you can see that some of the
categorical features are missing based on some grades like B, C, and E. This is because none of these
students obtained those grades but we still need those attributes because the model was trained on all
attributes including these. The following snippet helps us identify and add the missing categorical features.
We add the value for each of those features as 0 for each student since they did not obtain those grades.

In [15]: # add missing categorical feature columns
..t current_categorical_engineered features =
set(prediction features.columns) - set(numeric feature names)
: missing features = set(categorical engineered features) -
current_categorical engineered features
: for feature in missing features:
# add zeros since feature is absent in these data samples
prediction features[feature] = [0] * len(prediction features)

: # view final feature set
: prediction features

A| Over F N ¥ c ade B Over E
4
V-1 02764T -1 430636 L] 1 1 [ [+] o o
0494137 1.160705 1 0 o 1 [ o o

Figure 1-33. Final feature set for new students

We have our complete feature set ready for both the new students. Let’s put our model to the test and
get the predictions with regard to grant recommendations!

In [16]: ## predict using model
...t predictions = model.predict(prediction features)

..: ## display results

..: new_data[ 'Recommend'] = predictions
: new_data
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Name | OverallGrade | Obedient | ResearchScore | ProjectScore | Recommend
0| Nathan |F N 30 20 No
1| Thomas|A Y 78 80 Yes

Figure 1-34. New student records with model predictions for grant recommendations

We can clearly see from Figure 1-34 that our model has predicted grant recommendation labels for both
the new students. Thomas clearly being diligent, having a straight A average and decent scores, is most likely
to get the grant recommendation as compared to Nathan. Thus you can see that our model has learned how
to predict grant recommendation outcomes based on past historical student data. This should whet your
appetite on getting started with Machine Learning. We are about to deep dive into more complex real-world
problems in the upcoming chapters!

Challenges in Machine Learning

Machine Learning is a rapidly evolving, fast-paced, and exciting field with a lot of prospect, opportunity,
and scope. However it comes with its own set of challenges, due to the complex nature of Machine Learning
methods, its dependency on data, and not being one of the more traditional computing paradigms. The
following points cover some of the main challenges in Machine Learning.

e Data quality issues lead to problems, especially with regard to data processing and
feature extraction.

e Data acquisition, extraction, and retrieval is an extremely tedious and time
consuming process.

e Lack of good quality and sufficient training data in many scenarios.
¢  Formulating business problems clearly with well-defined goals and objectives.

e  Feature extraction and engineering, especially hand-crafting features, is one of the
most difficult yet important tasks in Machine Learning. Deep Learning seems to have
gained some advantage in this area recently.

e  Opverfitting or underfitting models can lead to the model learning poor
representations and relationships from the training data leading to detrimental
performance.

e  The curse of dimensionality: too many features can be a real hindrance.
e  Complex models can be difficult to deploy in the real world.

This is not an exhaustive list of challenges faced in Machine Learning today, but it is definitely a list of
the top problems data scientists or analysts usually face in Machine Learning projects and tasks. We will
cover dealing with these issues in detail when we discuss more about the various stages in the Machine
Learning pipeline as well as solve real-world problems in subsequent chapters.

Real-World Applications of Machine Learning

Machine Learning is widely being applied and used in the real world today to solve complex problems that
would otherwise have been impossible to solve based on traditional approaches and rule-based systems.
The following list depicts some of the real-world applications of Machine Learning.
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e  Product recommendations in online shopping platforms
e Sentiment and emotion analysis

e Anomaly detection

e  Fraud detection and prevention

° Content recommendation (news, music, movies, and so on)
e  Weather forecasting

e  Stock market forecasting

e  Market basket analysis

e  (Customer segmentation

e  Object and scene recognition in images and video

e  Speech recognition

e Churn analytics

e  Click through predictions

e  Failure/defect detection and prevention

e  E-mail spam filtering

Summary

The intent of this chapter was to get you familiarized with the foundations of Machine Learning before
taking a deep dive into Machine Learning pipelines and solving real-world problems. The need for Machine
Learning in today’s world is introduced in the chapter with a focus on making data-driven decisions at scale.
We also talked about the various programming paradigms and how Machine Learning has disrupted the
traditional programming paradigm. Next up, we explored the Machine Learning landscape starting from the
formal definition to the various domains and fields associated with Machine Learning. Basic foundational
concepts were covered in areas like mathematics, statistics, computer science, Data Science, data mining,
artificial intelligence, natural language processing, and Deep Learning since all of them tie back to Machine
Learning and we will also be using tools, techniques, methodologies, and processes from these fields in
future chapters. Concepts relevant to the various Machine Learning methods have also been covered
including supervised, unsupervised, semi-supervised, and reinforcement learning. Other classifications

of Machine Learning methods were depicted, like batch versus online based learning methods and

online versus instance based learning methods. A detailed depiction of the CRISP-DM process model was
explained to give an overview of the industry standard process for data mining projects. Analogies were
drawn from this model to build Machine Learning pipelines, where we focus on both supervised and
unsupervised learning pipelines.

We brought everything covered in this chapter together in solving a small real-world problem of
predicting grant recommendations for students and building a sample Machine Learning pipeline from
scratch. This should definitely get you ready for the next chapters, where you will be exploring each of the
stages in a Machine Learning pipeline in further details and cover ground on the Python Machine Learning
ecosystem. Last but not the least, challenges, and real-world applications of Machine Learning will give you
a good idea on the vast scope of Machine Learning and make you aware of the caveats and pitfalls associated
with Machine Learning problems.
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CHAPTER 2

The Python Machine Learning
Ecosystem

In the first chapter we explored the absolute basics of Machine Learning and looked at some of the
algorithms that we can use. Machine Learning is a very popular and relevant topic in the world of technology
today. Hence we have a very diverse and varied support for Machine Learning in terms of programming
languages and frameworks. There are Machine Learning libraries for almost all popular languages including
C++, R, Julia, Scala, Python, etc. In this chapter we try to justify why Python is an apt language for Machine
Learning. Once we have argued our selection logically, we give you a brief introduction to the Python
Machine Learning (ML) ecosystem. This Python ML ecosystem is a collection of libraries that enable the
developers to extract and transform data, perform data wrangling operations, apply existing robust Machine
Learning algorithms and also develop custom algorithms easily. These libraries include numpy, scipy,
pandas, scikit-learn, statsmodels, tensorflow, keras, and so on. We cover several of these libraries

in a nutshell so that the user will have some familiarity with the basics of each of these libraries. These will
be used extensively in the later chapters of the book. An important thing to keep in mind here is that the
purpose of this chapter is to acquaint you with the diverse set of frameworks and libraries in the Python

ML ecosystem to get an idea of what can be leveraged to solve Machine Learning problems. We enrich the
content with useful links that you can refer to for extensive documentation and tutorials. We assume some
basic proficiency with Python and programming in general. All the code snippets and examples used in this
chapter is available in the GitHub repository for this book at https://github.com/dipanjanS/practical-
machine-learning-with-python under the directory/folder for Chapter 2. You can refer to the Python file
named python_ml_ecosystem.py for all the examples used in this chapter and try the examples as you

read this chapter or you can even refer to the jupyter notebook named The Python Machine Learning
Ecosystem.ipynb for a more interactive experience.

Python: An Introduction

Python was created by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.cwi.nl/)
in the Netherlands. The first version of Python was released in 1991. Guido wrote Python as a successor of the
language called ABC. In the following years Python has developed into an extensively used high level language
and a general programming language. Python is an interpreted language, which means that the source code of

a Python program is converted into bytecode, which is then executed by the Python virtual machine. Python is
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different from major compiled languages like C and C++ as Python code is not required to be built and linked
like code for these languages. This distinction makes for two important points:

o  Python code is fast to develop: As the code is not required to be compiled and
built, Python code can be much readily changed and executed. This makes for a fast
development cycle.

e  Python code is not as fast in execution: Since the code is not directly compiled and
executed and an additional layer of the Python virtual machine is responsible for
execution, Python code runs a little slow as compared to conventional languages like
C, C++, etc.

Strengths

Python has steadily risen in the charts of widely used programming languages and according to several
surveys and research; it is the fifth most important language in the world. Recently several surveys depicted
Python to be the most popular language for Machine Learning and Data Science! We will compile a brief list
of advantages that Python offers that probably explains its popularity.

1. Easy to learn: Python is a relatively easy-to-learn language. Its syntax is simple
for a beginner to learn and understand. When compared with languages likes
C or Java, there is minimal boilerplate code required in executing a Python
program.

2.  Supports multiple programming paradigms: Python is a multi-paradigm,
multi-purpose programming language. It supports object oriented programming,
structured programming, functional programming, and even aspect
oriented programming. This versatility allows it to be used by a multitude of
programmers.

3. Extensible: Extensibility of Python is one of its most important characteristics.
Python has a huge number of modules easily available which can be readily
installed and used. These modules cover every aspect of programming from data
access to implementation of popular algorithms. This easy-to-extend feature
ensures that a Python developer is more productive as a large array of problems
can be solved by available libraries.

4. Active open source community: Python is open source and supported by a large
developer community. This makes it robust and adaptive. The bugs encountered
are easily fixed by the Python community. Being open source, developers can
tinker with the Python source code if their requirements call for it.

Pitfalls

Although Python is a very popular programming language, it comes with its own share of pitfalls. One of the
most important limitations it suffers is in terms of execution speed. Being an interpreted language, it is slow
when compared to compiled languages. This limitation can be a bit restrictive in scenarios where extremely
high performance code is required. This is a major area of improvement for future implementations of
Python and every subsequent Python version addresses it. Although we have to admit it can never be as fast
as a compiled language, we are convinced that it makes up for this deficiency by being super-efficient and
effective in other departments.
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Setting Up a Python Environment

The starting step for our journey into the world of Data Science is the setup of our Python environment. We
usually have two options for setting up our environment:

o Install Python and the necessary libraries individually

e  Use a pre-packaged Python distribution that comes with necessary libraries, i.e.
Anaconda

Anaconda is a packaged compilation of Python along with a whole suite of a variety of libraries,
including core libraries which are widely used in Data Science. Developed by Anaconda, formerly known
as Continuum Analytics, it is often the go-to setup for data scientists. Travis Oliphant, primary contributor
to both the numpy and scipy libraries, is Anaconda’s president and one of the co-founders. The Anaconda
distribution is BSD licensed and hence it allows us to use it for commercial and redistribution purposes.
A major advantage of this distribution is that we don’t require an elaborate setup and it works well on all
flavors of operating systems and platforms, especially Windows, which can often cause problems with
installing specific Python packages. Thus, we can get started with our Data Science journey with just one
download and install. The Anaconda distribution is widely used across industry Data Science environments
and it also comes with a wonderful IDE, Spyder (Scientific Python Development Environment), besides
other useful utilities like jupyter notebooks, the IPython console, and the excellent package management
tool, conda. Recently they have also talked extensively about Jupyterlab, the next generation UI for Project
Jupyter. We recommend using the Anaconda distribution and also checking out https://www.anaconda.
com/what-is-anaconda/ to learn more about Anaconda.

Set Up Anaconda Python Environment

The first step in setting up your environment with the required Anaconda distribution is downloading

the required installation package from https://www.anaconda.com/download/, which is the provider of
the Anaconda distribution. The important point to note here is that we will be using Python 3.5 and the
corresponding Anaconda distribution. Python 3.5.2 was released on June 2016 compared to 3.6, which
released on December 2016. We have opted for 3.5 as we want to ensure that none of the libraries that we
will be using in this book have any compatibility issues. Hence, as Python 3.5 has been around for a long
time we avoid any such compatibility issues by opting for it. However, you are free to use Python 3.6 and
the code used in this book is expected to work without major issues. We chose to leave out Python 2.7 since
support for Python 2 will be ending in 2020 and from the Python community vision, it is clear that Python 3
is the future and we recommend you use it.

Download the Anaconda3-4.2.0-Windows-x86 64 package (the one with Python 3.5) from https://
repo.continuum.io/archive/. A screenshot of the target page is shown in Figure 2-1. We have chosen the
Windows OS specifically because sometimes, few Python packages or libraries cause issues with installing or
running and hence we wanted to make sure we cover those details. If you are using any other OS like Linux
or MacOSX, download the correct version for your OS and install it.

69


https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/download/
https://repo.continuum.io/archive/
https://repo.continuum.io/archive/

CHAPTER 2 * THE PYTHON MACHINE LEARNING ECOSYSTEM

C () | @ Secure | https//repo.continuum.io/archive/

i Apps 4 Gmail Misc Study R Related ML Intel Statistics Python Running Investing BookProject Code To Re

Anaconda2-4.3.@-Windows-x86_64.exe 412.8M  2017-91-27 14:17:59  2c@2e21£542d61760c3e19bfob3essfe
Anaconda3-4.3.@-Linux-x86.sh 398.4M  2017-01-27 14:14:29 3f173aalab2c2b6ab3f8acbd228271d7
Anaconda3-4.3.@-Linux-x86_64.sh 473.4M  2017-91-27 14:15:21  dbe2e78adecal923b43beZecaacd622?
Anaconda3-4.3.@-Mac05X-x86_64.pkg 423.1M  2017-91-27 14:26:32  30b108a%cbc5d215a60187c5de89ca59
Anaconda3-4.3.@-Mac05X-xB6_64.sh 362.6M  2017-01-27 14:26:15 eBd80c503c27d5c072d3e3 24001822641
Anaconda3-4.3.0-Windows-x86.exe 347.2M  2017-81-27 14:18:45  aeTec9752cf81c01983Fcfoddfad7cc2
Anaconda3-4.3.0-Windows-x86_64.exe 421.2M  2017-01-27 14:19:41 137043b39860519967759fcBea76514
Anaconda2-4.2.0-Mac05X-xB6_64.pkg 493.9M  2016-10-17 19:33:11 cd2ccc991b7f1503335367d80d031700
Anaconda3-4.2.@-Mac05X-xB6_64.pkg 497.1M  2016-1@-17 19:33:47  Sled7f9af7436a1a23068ebo0se9d6ad
Anaconda2-4.2.@-Linux-x86.sh 365.8M  2016-09-27 15:50:20 226582ebdf1d982e18efb2bdfS2cSees
Anaconda2-4.2.@-Linux-x86_64.sh 446.@M  2016-99-27 15:49:54 80d1fbed7014b71c6764d76fb403F217
Anaconda2-4.2.@-Mac05X-x86_64.s5h 346.4M 2016-89-27 15:58:02 52f8b7420c462575efc297cBfdebefle
Anaconda2-4.2.@-Windows-x86,exe 324.1M  2016-29-27 15:54:50  f4f12af881175%e56464eef52484963d
Anaconda2-4.2.@-Windows-xB86_64.exe 3gl.emM 2016-89-27 15:55:47 223045095687 24dacPael932139b9c37
Anaconda3-4.2.@-Linux-x86.sh 373.9M  2016-09-27 15:50:34 7acal@eleaSbodb@a318bdeed5253747
Anaconda3-4.2.0-Linux-x86_64.sh 455.9M  2016-29-27 15:50:904  4692f716c82deb5fabb59d78f9f6e85¢

349.5M  2016-89-27 15:58:07  Tcb6le3SSebB60e342a5e27236e3f375
333.4M 2016-89-27 15:56:39 96e5feds52b22d667da936efbdedceisd
lanaconda3-4.2.0-Windows-x86 648 391.4M  2016-89-27 15:57:21  @caSefddcfe843762ade73bbb3f8dbod
Ara S — : 324.6M  2016-87-88 11:19:57  B813071788e08e236a323b5f7d337759
Anaconda2-4.1.1-Linux-x86_64.sh 399.6M 2016-87-08 11:19:56 fIbb3c@ccf23c9789bbB953352a68b13

2 £05X-xB6_64.5h
aconda3-4,2.0-Wind®

Anaconda2-4.1.1-Mac05X-xB6_64.pkg 345.@M 2016-87-88 11:19:59 #88beael19868dcelfaesesddlesc7bda
Anaconda2-4.1.1-Mac05X-x86_64.sh 295.8M 2016-87-88 11:20:00 fe2adad7as25e4e139a5122ad641bdac
Anaconda2-4.1.1-Windows-x86.exe 286.0M  2016-07-08 11:20:01  b319d6867c67723baT4aef4fodd3ISTE2
Anaconda2-4.1.1-Windows-x86_64.exe 341.2M 2016-87-88 11:28:01 1db0243dbfo2579f452d1b19ce245144
Anaconda3-4.1.1-Linux-x86.sh 329.1M 2016-87-28 11:20:02 @57620df8987ca62d5¢13491102547d9
Anaconda3-4.1.1-Linux-x86_64.sh 406,34 2016-87-88 11:20:02 dodce8d241f83ffc763504db50008e5h
Anaconda3-4.1.1-Mac05X-xB6_64.pkg 347.9M 2016-87-88 11:21:15 9d39642168324920850bd19637577f6e
Anaconda3-4.1.1-Mac05X-x86_64.sh 298.7TM 2016-87-88 11:21:17 1852268d5841869cbTcb3ag31bd63936
Anaconda3-4.1.1-Windows-x86.exe 293.8M  2016-07-08 11:21:18 39bd047c2169a9d072e984037487c %8
anaconda3-4.1.1-Windows-x86_64.exe 352.9M  2016-87-88 11:21:17  a3be294f8274c391148efdfbc63escasd
Anaconda2-4.1.@-Linux-x86.sh 324.4M 2016-26-28 11:28:28 96e842ef2d5789411c55ebofobece2314
Anaconda2-4.1.@-Linux-x86_64.sh 398.8M 2016-86-28 11:28:28 ©24d4264205d8d0c8533617dboaf f1d3

a dad a3 0 Maoncy u9c £8 ol 228 2 2036 0 39 33.39,30 hladagasdfeaa3cannnada Eagfd

Figure 2-1. Downloading the Anaconda package

Installing the downloaded file is as simple as double-clicking the file and letting the installer take care of
the entire process. To check if the installation was successful, just open a command prompt or terminal and
start up Python. You should be greeted with the message shown in Figure 2-2 identifying the Python and the
Anaconda version. We also recommend that you use the iPython shell (the command is ipython) instead of
the regular Python shell, because you get a lot of features including inline plots, autocomplete, and so on.

B Command Prompt - python - o X

Microsoft Windows [Version 10.0.15063] ~
(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users\DIP.DIPSLAPTOP>python

Python 3.5.2 |Anaconda custom (64-bit)| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMDE4)] on win32
Type "help”, "copyright”, “"credits" or "Ticense" for more information.

o3 2

Figure 2-2. Verifying installation with the Python shell

This should complete the process of setting up your Python environment for Data Science and
Machine Learning.
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Installing Libraries

We will not be covering the basics of Python, as we assume you are already acquainted with basic Python
syntax. Feel free to check out any standard course or book on Python programming to pick up on the basics.
We will cover one very basic but very important aspect of installing additional libraries. In Python the
preferred way to install additional libraries is using the pip installer. The basic syntax to install a package
from Python Package Index (PyPI) using pip is as follows.

pip install required package

This will install the required_package if it is present in PyP1. We can also use other sources other than
PyPI to install packages but that generally would not be required. The Anaconda distribution is already
supplemented with a plethora of additional libraries, hence it is very unlikely that we will need additional
packages from other sources.

Another way to install packages, limited to Anaconda, is to use the conda install command. This will
install the packages from the Anaconda package channels and usually we recommend using this, especially
on Windows.

Why Python for Data Science?

According to a 2017 survey by StackOverflow (https://insights.stackoverflow.com/survey/2017),
Python is world’s 5th most used language. It is one of the top three languages used by data scientists and one
of the most “wanted” language among StackOverflow users. In fact, in a recent poll by KDnuggets in 2017,
Python got the maximum number of votes for being the leading platform for Analytics, Data Science, and
Machine Learning based on the choice of users (http://www.kdnuggets.com/2017/08/python-overtakes-
r-leader-analytics-data-science.html). Python has a lot of advantages that makes it a language of
choice when it comes to the practices of Data Science. We will now try to illustrate these advantages and
argue our case for “Why Python is a language of choice for Data scientists?”

Powerful Set of Packages

Python is known for its extensive and powerful set of packages. In fact one of the philosophies shared by
Python is batteries included, which means that Python has a rich and powerful set of packages ready to be
used in a wide variety of domains and use cases. This philosophy is extended into the packages required
for Data Science and Machine Learning. Packages like numpy, scipy, pandas, scikit-learn, etc., which are
tailor-made for solving a variety of real-world Data Science problems, and are immensely powerful. This
makes Python a go-to language for solving Data Science related problems.

Easy and Rapid Prototyping

Python’s simplicity is another important aspect when we want to discuss its suitability for Data Science.
Python syntax is easy to understand as well as idiomatic, which makes comprehending existing code a
relatively simple task. This allows the developer to easily modify existing implementations and develop
his own ones. This feature is especially useful for developing new algorithms which may be experimental
or yet to be supported by any external library. Based on what we discussed earlier, Python development is
independent of time consuming build and link processes. Using the REPL shell, IDEs, and notebooks, you
can rapidly build and iterate over multiple research and development cycles and all the changes can be
readily made and tested.
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Easy to Collaborate

Data science solutions are rarely a one man job. Often a lot of collaboration is required in a Data Science
team to develop a great analytical solution. Luckily Python provides tools that make it extremely easy to
collaborate for a diverse team. One of the most liked features, which empowers this collaboration, are
jupyter notebooks. Notebooks are a novel concept that allow data scientists to share the code, data, and
insightful results in a single place. This makes for an easily reproducible research tool. We consider this to
be a very important feature and will devote an entire section to cover the advantages offered by the use of
notebooks.

One-Stop Solution

In the first chapter we explored how Data Science as a field is interconnected to various domains. A typical
project will have an iterative lifecycle that will involve data extraction, data manipulation, data analysis,
feature engineering, modeling, evaluation, solution development, deployment, and continued updating

of the solution. Python as a multi-purpose programming language is extremely diverse and it allows
developers to address all these assorted operations from a common platform. Using Python libraries you
can consume data from a multitude of sources, apply different data wrangling operations to that data, apply
Machine Learning algorithms on the processed data, and deploy the developed solution. This makes Python
extremely useful as no interface is required, i.e. you don’t need to port any part of the whole pipeline to some
different programming language. Also enterprise level Data Science projects often require interfacing with
different programming languages, which is also achievable by using Python. For example, suppose some
enterprise uses a custom made Java library for some esoteric data manipulation, then you can use Jython
implementation of Python to use that Java library without writing custom code for the interfacing layer.

Large and Active Community Support

The Python developer community is very active and humongous in number. This large community ensures
that the core Python language and packages remain efficient and bug free. A developer can seek support
about a Python issue using a variety of platforms like the Python mailing list, stack overflow, blogs, and
usenet groups. This large support ecosystem is also one of the reasons for making Python a favored language
for Data Science.

Introducing the Python Machine Learning Ecosystem

In this section, we address the important components of the Python Machine Learning ecosystem and give

a small introduction to each of them. These components are few of the reasons why Python is an important
language for Data Science. This section is structured to give you a gentle introduction and acquaint you

with these core Data Science libraries. Covering all of them in depth would be impractical and beyond the
current scope since we would be using them in detail in subsequent chapters. Another advantage of having a
great community of Python developers is the rich content that can be found about each one of these libraries
with a simple search. The list of components that we cover is by no means exhaustive but we have shortlisted
them on the basis of their importance in the whole ecosystem.

Jupyter Notebooks

Jupyter notebooks, formerly known as ipython notebooks, are an interactive computational environment
that can be used to develop Python based Data Science analyses, which emphasize on reproducible
research. The interactive environment is great for development and enables us to easily share the notebook
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and hence the code among peers who can replicate our research and analyses by themselves. These jupyter
notebooks can contain code, text, images, output, etc., and can be arranged in a step by step manner to

give a complete step by step illustration of the whole analysis process. This capability makes notebooks a
valuable tool for reproducible analyses and research, especially when you want to share your work with

a peer. While developing your analyses, you can document your thought process and capture the results

as part of the notebook. This seamless intertwining of documentation, code, and results make jupyter
notebooks a valuable tool for every data scientist.

We will be using jupyter notebooks, which are installed by default with our Anaconda distribution. This
is similar to the ipython shell with the difference that it can be used for different programming backends,
i.e. not just Python. But the functionality is similar for both of these with the added advantage of displaying
interactive visualizations and much more on jupyter notebooks.

Installation and Execution

We don’t require any additional installation for Jupyter notebooks, as it is already installed by the Anaconda
distribution. We can invoke the jupyter notebook by executing the following command at the command
prompt or terminal.

C:\>jupyter notebook

This will start a notebook server at the address localhost: 8888 of your machine. An important point to
note here is that you access the notebook using a browser so you can even initiate it on a remote server and
use it locally using techniques like ssh tunneling. This feature is extremely useful in case you have a powerful
computing resource that you can only access remotely but lack a GUI for it. Jupyter notebook allows you to
access those resources in a visually interactive shell. Once you invoke this command, you can navigate to the
address localhost:8888 in your browser, to find the landing page depicted in Figure 2-3, which can be used
to access existing notebooks or create new ones.

« C {3 O localhost2885/rees b @&'v @
£ Apps K Gmail Misc Study F Related ML Intel Seatistics Python Running Investing BookProject Code To Read List
~ jupyter
Files Runinin
Select items to perform actions on them Upload  New- &

Figure 2-3. Jupyter notebook landing page

On the landing page we can initiate a new notebook by clicking the New button on top right. By default
it will use the default kernel (i.e., the Python 3.5 kernel) but we can also associate the notebook with a
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different kernel (for example a Python 2.7 kernel, if installed in your system). A notebook is just a collection
of cells. There are three major types of cells in a notebook:

1. Code cells: Just like the name suggests, these are the cells that you can use to write
your code and associated comments. The contents of these cells are sent to the
kernel associated with the notebook and the computed outputs are displayed as
the cells’ outputs.

2. Markdown cells: Markdown can be used to intelligently notate the computation
process. These can contain simple text comments, HTML tags, images, and even
Latex equations. These will come in very handy when we are dealing with a new
and non-standard algorithm and we also want to capture the stepwise math and
logic related to the algorithm.

3.  Raw cells: These are the simplest of the cells and they display the text written in
them as is. These can be used to add text that you don’t want to be converted by
the conversion mechanism of the notebooks.

In Figure 2-4 we see a sample jupyter notebook, which touches on the ideas we just discussed in this section.

This is a level 1 heading

This can be usad to Arrange your notebodk

£.2.0 (&2-blit)| (default, Jul 5 2016, 11:21:13) [M5C v.190@ &2 bIt (AMDEL)]"

In [5): | import matplotlib.pyplot as pit
import numpy as np

t = np.arange(0.@, 2.8, 8.01)
i = np.cos(2*np.pi*t)
plt.plot(t, =)

A simple cosine curve

st 4

0.0 4

Energy (])

0.0 0.5 10 15 2.0
time (s)

Raw NBConvert Format | Mone v

==\,-'(r+b1

Figure 2-4. Sample jupyter notebook
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NumPy

Numpy is the backbone of Machine Learning in Python. It is one of the most important libraries in Python
for numerical computations. It adds support to core Python for multi-dimensional arrays (and matrices) and
fast vectorized operations on these arrays. The present day NumPy library is a successor of an early library,
Numeric, which was created by Jim Hugunin and some other developers. Travis Oliphant, Anaconda’s
president and co-founder, took the Numeric library as a base and added a lot of modifications, to launch the
present day NumPy library in 2005. It is a major open source project and is one of the most popular Python
libraries. It’s used in almost all Machine Learning and scientific computing libraries. The extent of popularity
of NumPy is verified by the fact that major OS distributions, like Linux and MacOS, bundle NumPy as a
default package instead of considering it as an add-on package.

Numpy ndarray

All of the numeric functionality of numpy is orchestrated by two important constituents of the numpy package,
ndarray and Ufuncs (Universal function). Numpy ndarray is a multi-dimensional array object which is the
core data container for all of the numpy operations. Universal functions are the functions which operate on
ndarrays in an element by element fashion. These are the lesser known members of the numpy package and
we will try to give a brief introduction to them in the later stage of this section. We will mostly be learning
about ndarrays in subsequent sections. (We will refer to them as arrays from now on for simplicity’s sake.)
Arrays (or matrices) are one of the fundamental representations of data. Mostly an array will be of
a single data type (homogeneous) and possibly multi-dimensional sometimes. The numpy ndarray isa
generalization of the same. Let’s get started with the introduction by creating an array.

In [4]: import numpy as np
...t arr = np.array([1,3,4,5,6])
:arr

Out[4]: array([1, 3, 4, 5, 6])
In [5]: arr.shape

out[5]: (5,)

In [6]: arr.dtype

Out[6]: dtype('int32")

In the previous example, we created a one-dimensional array from a normal list containing integers.
The shape attribute of the array object will tell us about the dimensions of the array. The data type was
picked up from the elements as they were all integers the data type is int32. One important thing to keep
in mind is that all the elements in an array must have the same data type. If you try to initialize an array in
which the elements are mixed, i.e. you mix some strings with the numbers then all of the elements will get
converted into a string type and we won'’t be able to perform most of the numpy operations on that array. So a
simple rule of thumb is dealing only with numeric data. You are encouraged to type in the following code in
an ipython shell to look at the error message that comes up in such a scenario!

In [16]: arr = np.array([1,'st',"'er',3])
...t arr.dtype

Out[16]: dtype('<U11")

In [17]: np.sum(arr)
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Creating Arrays

Arrays can be created in multiple ways in numpy. One of the ways was demonstrated earlier to create a single-
dimensional array. Similarly we can stack up multiple lists to create a multidimensional array.

In [19]: arr = np.array([[l,z,a],[2,4,6],[8,8,8]])
: arr.shape

out[19]: (3, 3)
In [20]: arr

Out[20]:

array([[1, 2, 3],
[2) 4) 6])
(8, 8, 8]])

In addition to this we can create arrays using a bunch of special functions provided by numpy.
np.zeros: Creates a matrix of specified dimensions containing only zeroes:

In [21]: arr = np.zeros((2,4))
c..toarr
Out[21]:array([[ 0., o0., 0., 0.],
[ 0., 0., 0., 0.]])
np.ones: Creates a matrix of specified dimension containing only ones:

In [22]: arr = np.ones((2,4))

...: arr

Out[22]:

array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.1D)

np.identity: Creates an identity matrix of specified dimensions:

In [23]: arr = np.identity(3)

c..0arr
Out[23]:
array([[ 1., 0., o0.],
[ 0., 1., o0.],
[ 0., 0., 1.]])

Often, an important requirement is to initialize an array of a specified dimension with random values.
This can be done easily by using the randn function from the numpy . random package:

In [25]: arr = np.random.randn(3,4)
c..toarr

Out[25]:

array([[ 0.0102692 , -0.13489664, 1.03821719, -0.28564286],
[-1.12651838, 1.41684764, 1.11657566, -0.1909584 ],
[ 2.20532043, 0.14813109, 0.73521382, 1.1270668 ]])
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In practice, most of the arrays are created during reading in the data. We will cover the text data retrieval
operations of numpy very briefly as we will try to use pandas generally, for our data ingestion process. (More
on this in a later part of the chapter.)

One of the functions that we can use to read data from text file to a numpy array is genfromtext. This
function can open a text file and read in data delimited by any character. (delimiter for a comma separated

“n

fileis “”). Since it is not our preferred way of retrieving data, we will give a brief example of the function here.

In [39]: b = BytesIO(b"2,23,33\n32,42,63.4\n35,77,12")

: arr = np.genfromtxt(b, delimiter=",")
:arr

Out[39]:

array([[ 2., 23., 33.],
[ 32., 42., 63.4],
[ 35., 77., 12.1])

Accessing Array Elements

Once we have created an array by reading in our data, the next important part is to access that data using a
wide variety of mechanisms. Numpy provides a lot of ways in which array elements can be accessed. We will
try to give the most popular useful ways that facilitate this.

Basic Indexing and Slicing

Ndarray can leverage the basic indexing operations that are followed by the 1ist class, i.e. 1ist object [obj].
If the obj is not an ndarray object, then the indexing is said to be basic indexing.

Note  One important point to remember is that basic indexing will always return a view of the original
array. It means that it will only refer to the original array and any change in values will be reflected in the
original array also.

For example, if we want to access the complete second row of the array in one of the earlier examples,
we can simply refer to it using arr[1].

In [44]: arr[1]
Out[44]: array([32., 42., 63.4])

This access becomes interesting in the case of an array having more than two dimensions. Consider the
following code snippet.

In [48]: arr = np.arange(12).reshape(2,2,3)

In [49]: arr
out[49]:
array([[[ 0, 1, 2],

0

3, 4, 5],
6) 7) 8])
9, 10, 11]]])

[
[
([
[
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In [50]: arr[O]

Out[50]:

array([[o0, 1, 2],
(3, 4, 511)

Here we see that using a similar indexing scheme as above, we get an array having one lesser dimension
than the original array.

The next important concept in accessing arrays is the concept of slicing arrays. Suppose we want
to have a collection of elements only instead of all the elements. Then we can use slicing to access the
elements. We will demonstrate the concept with a one-dimensional array.

In [57]: arr = np.arange(10)
...: arr[5:]
Out[s57]: array([5, 6, 7, 8, 9])

In [58]: arr[5:8]
Out[58]: array([5, 6, 7])

In [60]: arr[:-5]
Out[60]: array([o, 1, 2, 3, 4])

If the number of dimensions in the object supplied is less than the dimension of the array being
accessed then the colon (:) is assumed for all the dimensions. Consider the following example

In [13]: arr = np.arange(12).reshape(2,2,3)

eees AIY
Out[13]:
array([[[ o, 1, 2],
[ 3, 4, 511,
[[6, 7, 8,
[ 9, 10, 11]]])

In [14]: arr[1:2]
Out[14]:
array([[[ 6, 7, 8],

[ 9, 10, 11]]])

Another way to access an array is to use dots (...) based indexing. Suppose in a three-dimensional array
we want to access the value of only one column. We can do it in two ways.

In [8]: arr = np.arange(27).reshape(3,3,3)

eees AT
Out[8]:
array([[[ o, 1, 2],
[ 3, 4, 5],
[6, 7, 811,

[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
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[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])

Now if we want to access the third column, we can use two different notations to access that column:

In [10]: arr[:,:,2]

Out[10]:

array([[ 2, 5, 8],
[11, 14, 17],
[20, 23, 26]])

We can also use a dot notation in the following way. Both of the methods gets us the same value but
the dot notation is concise. The dot notation stands for as many colons as required to complete an indexing
operation.

In [11]: arr[...,2]

Out[11]:

array([[ 2, 5, 8],
[11, 14, 17],
[20, 23, 26]])

Advanced Indexing

The difference in advanced indexing and basic indexing comes from the type of object being used to
reference the array. If the object is an ndarray object (data type int or bool) or a non-tuple sequence object
or a tuple object containing an ndarray (data type integer or bool), then the indexing being done on the
array is said to be advanced indexing.

Note Advanced indexing will always return the copy of the original array data.

Integer array indexing: This advanced indexing occurs when the reference object is also an array. The
simplest type of indexing is when we provide an array that’s equal in dimensions to the array being accessed.
For example:

In [19]: arr = np.arange(9).reshape(3,3)
...: arr

Out[19]:

array([[o, 1, 2],

(3, 4, 5],

(6, 7, 811)

In [20]: arr[[o0,1,2],[1,0,0]]
Out[20]: array([1, 3, 6])

In this example we have provided an array in which the first part identifies the rows we want to access

and the second identifies the columns which we want to address. This is quite similar to providing a
collective element-wise address.
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Boolean indexing: This advanced indexing occurs when the reference object is an array of Boolean
values. This is used when we want to access data based on some conditions, in that case, Boolean indexing
can be used. We will illustrate it with an example. Suppose in one array, we have the names of some cities
and in another array, we have some data related to those cities.

In [3]: cities = np.array(["delhi","bangalore","mumbai","chennai", "bhopal"])

..: city data = np.random.randn(5,3)

...: city data
Out[3]:array([[ 1.78780089, -0.25099029, -0.26002244],
[ 1.41016167, -0.43878679, 0.4912639 ],
[-0.32176723, -0.01912549, -1.22891881],
[-0.93371835, -0.03604015, -0.37319556],
[ 1.48625779, 0.62758167, 0.77321756]])

In [4]: city data[cities =="delhi"]
Out[4]: array([[ 1.78780089, -0.25099029, -0.26002244]])

We can also use Boolean indexing for selecting some elements of an array that satisfy a particular
condition. For example, in the previous array suppose we want to only select non-zero elements. We can do
that easily using the following code.

In [6]: city data[city data >0]

out[6]:

array([ 1.78780089, 1.41016167, 0.4912639 , 1.48625779, 0.62758167,
0.77321756])

We observe that the shape of the array is not maintained so we directly cannot always use this indexing
method. But this method is quite useful in doing conditional data substitution. Suppose in the previous case,
we want to substitute all the non-zero values with 0. We can achieve that operation by the following code.

In [7]: city data[city data >0] =0
1 city data

[0 , -0.25099029, -0.26002244],
[ o. , -0.43878679, O. 1,
[-0.32176723, -0.01912549, -1.22891881],
[-0.93371835, -0.03604015, -0.37319556],
[o > 0. > O. 11

O w

Operations on Arrays

At the start of this section, we mentioned the concept of Universal functions (Ufuncs). In this sub-section,
we learn some of the functionalities provided by those functions. Most of the operations on the numpy arrays
is achieved by using these functions. Numpy provides a rich set of functions that we can leverage for various
operations on arrays. We cover some of those functions in brief, but we recommend you to always refer to
the official documentation of the project to learn more and leverage them in your own projects.

Universal functions are functions that operate on arrays in an element by element fashion. The
implementation of Ufunc is vectorized, which means that the execution of Ufuncs on arrays is quite fast. The
Ufuncs implemented in the numpy package are implemented in compiled C code for speed and efficiency.
But it is possible to write custom functions by extending the numpy . ufunc class of the numpy package.
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Ufuncs are simple and easy to understand once you are able to relate the output they produce on a
particular array.

In [23]: arr = np.arange(15).reshape(3,5)
...t arr

Out[23]:

array([[ 0, 1, 2, 3, 4],
[ 5) 6) 7) 8) 9])
[10, 11, 12, 13, 14]])

In [24]: arr + 5

Out[24]:

arraY([[ 5) 6) 7) 8) 9])
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])

In [25]: arr * 2

Out[25]:

array([[ 0, 2, 4, 6, 8],
[10, 12, 14, 16, 18],
[20, 22, 24, 26, 28]])

We see that the standard operators when used in conjunction with arrays work element-wise. Some
Ufuncs will take two arrays as input and output a single array, while a rare few will output two arrays also.

In [29]: arrl = np.arange(15).reshape(5,3)
..t arr2 = np.arange(5).reshape(5,1)
: arr2 + arri

Out[29]:
array([[ o, 1, 2]
» 5, 6]
) 9) 10]
» 13, 14]
) 8]

4
8
2
6, 17, 1

[
[
[
[1
[1

In [30]: arri
Out[30]:

array([[ o, 1, 2
[3, 4, 5
[6, 7, 8
[ 9, 10, 11
[12, 13, 14

In [31]: arr2
Out[31]:
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array([[o],
[1],
[2],
(31,
[411)

Here we see that we were able to add up two arrays even when they were of different sizes. This is
achieved by the concept of broadcasting. We will conclude this brief discussion on operations on arrays by
demonstrating a function that will return two arrays.

In [32]: arri = np.random.randn(5,3)
:oarrl

Out[32]:

array([[-0.57863219, -0.36613451, -0.92311378],
[ 0.81557068, 0.20486617, -0.16740779],
[ 0.73806067, 1.30173294, 0.6144705 ],
[ 0.26294157, -0.09300711, 1.1794524 ],
[ 0.25011242, -0.65374314, -0.57663904]])

In [35]: np.modf(arr1)
Out[35]:
(array([[-0.57863219, -0.36613451, -0.92311378],
0.81557068, 0.20486617, -0.16740779],
0.73806067, 0.30173294, 0.6144705 ],
0.26294157, -0.09300711, 0.1794524 ],
0.25011242, -0.65374314, -0.57663904]]),
0., -0., -0.
0., 0., -0.
0., 1., oO.
0., -0., 1.
0., -0., -0.

[-
[
[
[
[
array([[-
[
[
[
[

— e e

)

)

)

)
-0.11))

The function modf will return the fractional and the integer part of the input supplied to it. Hence it will
return two arrays of the same size. We tried to give you a basic idea of the operations on arrays provided by
the numpy package. But this list is not exhaustive; for the complete list you can refer to the reference page for
Ufuncs at https://docs.scipy.org/doc/numpy/reference/ufuncs.html.

Linear Algebra Using numpy

Linear algebra is an integral part of the domain of Machine Learning. Most of the algorithms we will deal
with can be concisely expressed using the operations of linear algebra. Numpy was initially built to provide
the functions similar to MATLAB and hence linear algebra functions on arrays were always an important
part of it. In this section, we learn a bit about performing linear algebra on ndarrays using the functions
implemented in the numpy package.

One of the most widely used operations in linear algebra is the dot product. This can be performed on
two compatible (brush up on your matrices and array skills if you need to know which arrays are compatible
for a dot product) ndarrays by using the dot function.

np.array([

In [39]: A [1,2,3],
np.array([[9,8,7],

(4 ,
: B [6 s

6
»4
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In [40]: A.dot(B)

Out[40]:

array([[ 24, 24, 24],
[ 72, 69, 66],
[120, 114, 108]])

Similarly, there are functions implemented for finding different products of matrices like inner, outer, and so
on. Another popular matrix operation is transpose of a matrix. This can be easily achieved by using the T function.

In [41]: A = np.arange(15).reshape(3,5)
In [46]: A.T
Out[46]:
array([[ o, 5, 10],
[ 1, 6, 11],
[ 2, 7,12],
[ 3) 8) 13]’
[ 4, 9, 14]])

Oftentimes, we need to find out decomposition of a matrix into its constituents factors. This is called
matrix factorization. This can be achieved by the appropriate functions. A popular matrix factorization
method is SVD factorization (covered briefly in Chapter 1 concepts), which returns decomposition of a
matrix into three different matrices. This can be done using linalg. svd function.

In [48]: np.linalg.svd(A)

Out[48]:

(array([[-0.15425367, 0.89974393, 0.40824829
[-0.50248417, 0.28432901, -0.81649658
[-0.85071468, -0.3310859 , 0.40824829]]),

array([ 3.17420265e+01,  2.72832424e+00, 4.58204637e-16]),
array([[-0.34716018, -0.39465093, -0.44214167, -0.48963242, -0.53712316],

0.69244481, -0.37980343, -0.06716206, 0.24547932, 0.55812069],

0

0

0

1,
1,

[ -
[ -
[ 0.33717486, -0.77044776, 0.28661392, 0.38941603, -0.24275704],
[-0.36583339, 0.32092943, -0.08854543, 0.67763613, -0.54418674],
[-0.39048565, 0.05843412, 0.8426222 , -0.29860414, -0.21196653]]))

Linear algebra is often also used to solve a system of equations. Using the matrix notation of system of
equations and the provided function of numpy, we can easily solve such a system of equation. Consider the
system of equations:

7X + 5y -3z = 16
3x - 5y + 2z = -8
5 +3y -7z =0

This can be represented as two matrices: the coefficient matrix (a in the example) and the constants
vector (b in the example).

In [51]:

np'arraY([[7J5)'3]) [3)'512];[5131'7]])
np.array([16,-8,0])
np.linalg.solve(a, b)

X X T o
I

Out[51]: array([ 1., 3., 2.])
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We can also check if the solution is correct using the np.allclose function.

In [52]: np.allclose(np.dot(a, x), b)
Out[52]: True

Similarly, functions are there for finding the inverse of a matrix, eigen vectors and eigen values of
a matrix, norm of a matrix, determinant of a matrix, and so on, some of which we covered in detail in
Chapter 1. Take a look at the details of the function implemented at https://docs.scipy.org/doc/numpy/
reference/routines.linalg.html.

Pandas

Pandas is an important Python library for data manipulation, wrangling, and analysis. It functions as an
intuitive and easy-to-use set of tools for performing operations on any kind of data. Initial work for pandas
was done by Wes McKinney in 2008 while he was a developer at AQR Capital Management. Since then,

the scope of the pandas project has increased a lot and it has become a popular library of choice for data
scientists all over the world. Pandas allows you to work with both cross-sectional data and time series based
data. So let’s get started exploring pandas!

Data Structures of Pandas
All the data representation in pandas is done using two primary data structures:
e  Series

e  Dataframes

Series

Series in pandas is a one-dimensional ndarray with an axis label. It means that in functionality, it is
almost similar to a simple array. The values in a series will have an index that needs to be hashable. This
requirement is needed when we perform manipulation and summarization on data contained in a series
data structure. Series objects can be used to represent time series data also. In this case, the index is a
datetime object.

Dataframe

Dataframe is the most important and useful data structure, which is used for almost all kind of data
representation and manipulation in pandas. Unlike numpy arrays (in general) a dataframe can contain
heterogeneous data. Typically tabular data is represented using dataframes, which is analogous to an Excel
sheet or a SQL table. This is extremely useful in representing raw datasets as well as processed feature sets
in Machine Learning and Data Science. All the operations can be performed along the axes, rows, and
columns, in a dataframe. This will be the primary data structure which we will leverage, in most of the use
cases in our later chapters.
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Data Retrieval

Pandas provides numerous ways to retrieve and read in data. We can convert data from CSV files, databases,
flat files, and so on into dataframes. We can also convert a list of dictionaries (Python dict) into a dataframe.
The sources of data which pandas allows us to handle cover almost all the major data sources. For our
introduction, we will cover three of the most important data sources:

o List of dictionaries
e (CSVfiles

e  Databases

List of Dictionaries to Dataframe

This is one of the simplest methods to create a dataframe. It is useful in scenarios where we arrive at the data
we want to analyze, after performing some computations and manipulations on the raw data. This allows us
to integrate a pandas based analysis into data being generated by other Python processing pipelines.

In[27]: import pandas as pd
In[28]: d = [{'city':'Delhi',"data":1000},
et {'city':'Bangalore',"data":2000},
{"city"':'Mumbai',"data":1000}]
In[29]: pd.DataFrame(d)

Out[29]:

city data
0 Delhi 1000
1 Bangalore 2000
2 Mumbai 1000

In[30]: df = pd.DataFrame(d)

In[31]: df
Out[31]:

city data
0 Delhi 1000
1 Bangalore 2000
2 Mumbai 1000

Here we provided a list of Python dictionaries to the DataFrame class of the pandas library and the
dictionary was converted into a DataFrame. Two important things to note here: first the keys of dictionary
are picked up as the column names in the dataframe (we can also supply some other name as arguments
for different column names), secondly we didn’t supply an index and hence it picked up the default index of
normal arrays.

CSV Files to Dataframe

CSV (Comma Separated Files) files are perhaps one of the most widely used ways of creating a

dataframe. We can easily read in a CSV, or any delimited file (like TSV), using pandas and convert

into a dataframe. For our example we will read in the following file and convert into a dataframe by using
Python. The data in Figure 2-5 is a sample slice of a CSV file containing the data of cities of the world from
http://simplemaps.com/data/world-cities. We will use the same data in a later part of this chapter also.
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city,city_ascii,lat,lng,pop,country,iso2,iso3,province

Qal eh-ye Now,Qal eh-ye,34.98300013,63.13329964,2997 ,Afghanistan,AF,AFG,Badghis
Chaghcharan,Chaghcharan,34.5167011,65.25000063,15000 ,Afghanistan,AF,AFG,Ghor
Lashkar Gah,Lashkar Gah,31.58299802,64.35999955,201546,Afghanistan,AF,AFG,Hilmand
Zaranj,Zaranj,31.11200108,61.88699752,49851,Afghanistan,AF,AFG,Nimroz

Tarin Kowt,Tarin Kowt,32.63329815,65.86669865,10000,Afghanistan,AF,AFG,Uruzgan
Zareh Sharan,Zareh Sharan,32.85000016,68.41670453,13737 ,Afghanistan,AF,AFG,Paktika
Asadabad,Asadabad, 34.86600004,71.15600459,48400,Afghanistan,AF,AFG,Kunar
Talogan,Talogan,36.72999904,69.54000364,64256,Afghanistan,AF,AFG, Takhar

Mahmud-E Eragi,Mahmud-E Eraqi,35.01669608,69.33330065,7407,Afghanistan,AF,AFG,Kapisa
Mehtar Lam,Mehtar Lam,34.65000001,70.16670052,17345,Afghanistan,AF,AFG, Laghman
Baraki Barak,Baraki Barak,33.9667021,68.96670354,22305,Afghanistan,AF,AFG,Logar
Aybak,Aybak,36.26100015,68.04000051,24000,Afghanistan,AF,AFG,Samangan

Figure 2-5. A sample CSV file

We can convert this file into a dataframe with the help of the following code leveraging pandas.
In [1]: import pandas as pd

In [2]: city data = pd.read csv(filepath or buffer='simplemaps-worldcities-basic.csv")
In [3]: city data.head(n=10)

Out[3]:

city city ascii lat lng pop country \

0 Qal eh-ye Now Qal eh-ye 34.983000 63.133300 2997 Afghanistan
Chaghcharan Chaghcharan 34.516701 65.250001 15000 Afghanistan
Lashkar Gah Lashkar Gah 31.582998 64.360000 201546 Afghanistan
Zaranj Zaranj 31.112001 61.886998 49851 Afghanistan

Tarin Kowt Tarin Kowt 32.633298 65.866699 10000 Afghanistan

Zareh Sharan Zareh Sharan 32.850000 68.416705 13737 Afghanistan
Asadabad Asadabad 34.866000 71.150005 48400 Afghanistan

Talogan Talogan 36.729999 69.540004 64256 Afghanistan

Mahmud-E Eraqi Mahmud-E Eraqi 35.016696 69.333301 7407 Afghanistan
Mehtar Lam Mehtar Lam 34.650000 70.166701 17345 Afghanistan

W oo~NOUT B WN R

iso2 iso3 province
AF AFG Badghis
AF AFG Ghor

AF AFG Hilmand
AF AFG Nimroz
AF AFG Uruzgan
AF AFG Paktika
AF AFG Kunar
AF AFG Takhar
AF AFG Kapisa
AF AFG Laghman

O oo~NOUVT B WNPE O

As the file we supplied had a header included, those values were used as the name of the columns in
the resultant dataframe. This is a very basic yet core usage of the function pandas.read csv. The function
comes with a multitude of parameters that can be used to modify its behavior as required. We will not cover
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the entire gamut of parameters available and you are encouraged to read the documentation of this function
as this is one of the starting point of most Python based data analysis.

Databases to Dataframe

The most important data source for data scientists is the existing data sources used by their organizations.
Relational databases (DBs) and data warehouses are the de facto standard of data storage in almost all of the
organizations. Pandas provides capabilities to connect to these databases directly, execute queries on them
to extract data, and then convert the result of the query into a structured dataframe. The pandas.from_sql
function combined with Python’s powerful database library implies that the task of getting data from DBs is
simple and easy. Due to this capability, no intermediate steps of data extraction are required. We will now take
an example of reading data from a Microsoft SQL Server database. The following code will achieve this task.

server = 'xxxxxxxx' # Address of the database server

user = 'XXxxxx' # the username for the database server

password = 'xxxxx' # Password for the above user

database = 'xxxxx' # Database in which the table is present

conn = pymssql.connect(server=server, user=user, password=password, database=database)
query = "select * from some_table"

df = pd.read _sql(query, conn)

The important to thing to notice here is the connection object (conn in the code). This object is the
one which will identify the database server information and the type of database to pandas. Based on the
endpoint database server we will change the connection object. For example we are using the pymssql
library for access to Microsoft SQL server here. If our data source is changed to a Postgres database, the
connection object will change but the rest of the procedure will be similar. This facility is really handy when
we need to perform similar analyses on data originating from different sources. Once again, the read_sql
function of pandas provides a lot of parameters that allow us to control its behavior. We also recommend you
to check out the sqlalchemy library, which makes creating connection objects easier irrespective of the type
of database vendor and also provides a lot of other utilities.

Data Access

The most important part after reading in our data is that of accessing that data using the data structure’s
access mechanisms. Accessing data in the pandas dataframe and series objects is very much similar to the
access mechanism that exist for Python lists or numpy arrays. But they also offer some extra methods for
data access specific to dataframe/series.

Head and Tail

In the previous section we witnessed the method head. It gives us the first few rows (by default 5) of the
data. A corresponding function is tail, which gives us the last few rows of the dataframe. These are one of
the most widely used pandas functions, as we often need to take a peek at our data as and when we apply
different operations/selections on it. We already have seen the output of head, so we’ll use the tail function
on the same dataframe and see its output.

In [11]: city data.tail()

Out[11]:

city city ascii lat 1lng pop country \

7317 Mutare Mutare -18.970019 32.650038 216785.0 Zimbabwe
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7318 Kadoma Kadoma -18.330006 29.909947 56400.0 Zimbabwe

7319 Chitungwiza Chitungwiza -18.000001 31.100003 331071.0 Zimbabwe
7320 Harare Harare -17.817790 31.044709 1557406.5 Zimbabwe

7321 Bulawayo Bulawayo -20.169998 28.580002 697096.0 Zimbabwe

iso2 iso3 province

7317 ZW ZWE Manicaland

7318 ZW ZWE Mashonaland West
7319 ZW ZWE Harare

7320 ZW ZWE Harare

7321 ZW ZWE Bulawayo

Slicing and Dicing

The usual rules of slicing and dicing data that we used in Python lists apply to the Series object as well.

In [12]: series es = city data.lat
In [13]: type(series es)
Out[13]: pandas.core.series.Series

In [14]: series es[1:10:2]
Out[14]:

1 34.516701

3 31.112001

5 32.850000

7 36.729999

9 34.650000

Name: lat, dtype: float64

In [15]: series es[:7]
Out[15]:

0 34.983000

1 34.516701

2 31.582998

3 31.112001

4 32.633298

5 32.850000

6 34.866000

Name: lat, dtype: float64

In [23]: series es[:-7315]
Out[23]:

0 34.983000

1 34.516701

2 31.582998

3 31.112001

4 32.633298

5 32.850000

6 34.866000

Name: lat, dtype: float64
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The examples given here are self-explanatory and you can refer to the numpy section for more details.
Similar slicing rules apply for dataframes also but the only difference is that now simple slicing refers to
the slicing of rows and all the other columns will end up in the result. Consider the following example

In [24]: city data[:7]

Out[24]:

city city ascii lat lng pop country \

0 Qal eh-ye Now Qal eh-ye 34.983000 63.133300 2997 Afghanistan

1 Chaghcharan Chaghcharan 34.516701 65.250001 15000 Afghanistan

2 Lashkar Gah Lashkar Gah 31.582998 64.360000 201546 Afghanistan
3 Zaranj Zaranj 31.112001 61.886998 49851 Afghanistan

4 Tarin Kowt Tarin Kowt 32.633298 65.866699 10000 Afghanistan

5 Zareh Sharan Zareh Sharan 32.850000 68.416705 13737 Afghanistan
6 Asadabad Asadabad 34.866000 71.150005 48400 Afghanistan

iso2 iso3 province
0 AF AFG Badghis

1 AF AFG Ghor

2 AF AFG Hilmand

3 AF AFG Nimroz

4 AF AFG Uruzgan

5 AF AFG Paktika

6 AF AFG Kunar

For providing access to specific rows and specific columns, pandas provides useful functions like iloc
and loc which can be used to refer to specific rows and columns in a dataframe. There is also the ix function
but we recommend using either loc or iloc. The following examples leverages the iloc function provided
by pandas. This allows us to select the rows and columns using structure similar to array slicing. In the
example, we will only pick up the first five rows and the first four columns.

In [28]: city data.iloc[:5,:4]

Out[28]:

city city ascii lat Ing

0 Qal eh-ye Now Qal eh-ye 34.983000 63.133300
1 Chaghcharan Chaghcharan 34.516701 65.250001
2 Lashkar Gah Lashkar Gah 31.582998 64.360000
3 Zaranj Zaranj 31.112001 61.886998

4 Tarin Kowt Tarin Kowt 32.633298 65.866699

Another access mechanism is Boolean based access to the dataframe rows or columns. This is
particularly important for dataframes, as it allows us to work with a specific set of rows and columns. Let’s
consider the following example in which we want to select cities that have population of more than 10
million and select columns that start with the letter 1:

In [56]: city data[city data['pop'] >
10000000] [city data.columns[pd.Series(city data.columns).str.
startswith('1")]]
Out[53]:
lat 1Ing
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360 -34.602502 -58.397531
1171 -23.558680 -46.625020

2068
3098
3110
3492
4074
4513
5394
6124
7071

31.
28.
19.
35.
19.
24.
55
41.
40.

216452
669993
016990
685017
442442
869992

.752164

104996
749979

121.436505
77.230004
72.856989
139.751407
-99.130988
66.990009
37.615523
29.010002
-73.980017

When we select data based on some condition, we always get the part of dataframe that satisfies the
condition supplied. Sometimes we want to test a condition against a dataframe but want to preserve the
shape of the dataframe. In these cases, we can use the where function (check out numpy's where function
also to see the analogy!). We'll illustrate this function with an example in which we will try to select all the
cities that have population greater than 15 million.

In [6]: city greater 1omil = city data[city_data['pop'] > 10000000]

In [23]: city greater 10mil.where(city greater 10omil.population > 15000000)
Out[23]:
city city ascii lat 1lng population country iso2 iso3 \

360 NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Mumbai Mumbai 19.016990 72.856989 15834918.0 India IN IND
Tokyo Tokyo 35.685017 139.751407 22006299.5 Japan JP JPN
NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

1171
2068
3098
3110
3492
4074
4513
5394
6124
7071

NaN
NaN
NaN
NaN
NaN

province
360 NaN

1171
2068
3098
3110
3492
4074
4513
5394
6124
7071

NaN
NaN
NaN

Maharashtra

Tok
NaN
NaN
NaN
NaN
NaN

yo

Here we see that we get the output dataframe of the same size but the rows that don’t conform to the

condition are replaced with NaN.
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In this section, we learned some of the core data access mechanisms of pandas dataframes. The data
access mechanism of pandas are as simple and extensive to use as with numpy this ensures that we have
various way to access our data.

Data Operations

In subsequent chapters of our book, the pandas dataframe will be our data structure of choice for most data
processing and wrangling operations. So we would like to spend some more time exploring some important
operations that can be performed on dataframes using specific supplied functions.

Values Attribute

Each pandas dataframe will have certain attributes. One of the important attributes is values. It is important
as it allows us access to the raw values stored in the dataframe and if they all homogenous i.e., of the

same kind then we can use numpy operations on them. This becomes important when our data is a mix of
numeric and other data types and after some selections and computations, we arrive at the required subset
of numeric data. Using the values attribute of the output dataframe, we can treat it in the same way as a
numpy array. This is very useful when working with feature sets in Machine Learning. Traditionally, numpy
vectorized operations are much faster than function based operations on dataframes.

In [55]: df = pd.DataFrame(np.random.randn(8, 3),
columns=['A", 'B', 'C'])

In [56]: df
Out[56]:

A B C
0 -0.271131 0.084627 -1.707637
1 1.895796 0.590270 -0.505681
2 -0.628760 -1.623905 1.143701
3 0.005082 1.316706 -0.792742
4 0.135748 -0.274006 1.989651
5 1.068555 0.669145 0.128079
6 -0.783522 0.167165 -0.426007
7 0.498378 -0.950698 2.342104

In [58]: nparray = df.values
In [59]: type(nparray)
Out[59]: numpy.ndarray

Missing Data and the fillna Function

In real-world datasets, the data is seldom clean and polished. We usually will have a lot of issues with data
quality (missing values, wrong values and so on). One of the most common data quality issues is that of
missing data. Pandas provides us with a convenient function that allows us to handle the missing values of a
dataframe.

For demonstrating the use of the fillna function, we will use the dataframe we created in the previous
example and introduce missing values in it.

In [65]: df.iloc[4,2] = NA

In [66]: df
0ut[66]:
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A B (@
-0.271131 0.084627 -1.707637
1.895796 0.590270 -0.505681
-0.628760 -1.623905 1.143701
0.005082 1.316706 -0.792742
.135748 -0.274006 NaN
1.068555 0.669145 0.128079
-0.783522 0.167165 -0.426007
0.498378 -0.950698 2.342104

~Nouvh WwWNRER O
o

In [70]: df.fillna (0)
Out[70]:
A B C
-0.271131 0.084627 -1.707637
1.895796 0.590270 -0.505681
-0.628760 -1.623905 1.143701
0.005082 1.316706 -0.792742
.135748 -0.274006 0.000000
1.068555 0.669145 0.128079
-0.783522 0.167165 -0.426007
0.498378 -0.950698 2.342104

~Nouiph WwWwN R O
o

Here we have substituted the missing value with a default value. We can use a variety of methods to
arrive at the substituting value (mean, median, and so on). We will see more methods of missing value
treatment (like imputation) in subsequent chapters.

Descriptive Statistics Functions

A general practice of dealing with datasets is to know as much about them as possible. Descriptive statistics
of a dataframe give data scientists a comprehensive look into important information about any attributes
and features in the dataset. Pandas packs a bunch of functions, which facilitate easy access to these statistics.

Consider the cities dataframe (city_data) that we consulted in the earlier section. We will use pandas
functions to gather some descriptive statistical information about the attributes of that dataframe. As we
only have three numeric columns in that particular dataframe, we will deal with a subset of the dataframe
which contains only those three values.

In [76]: columns _numeric = ['lat','lng','pop']
In [78]: city data[columns_numeric].mean()

Out[78]:
lat 20.662876
Ing 10.711914

pop 265463.071633
dtype: floaté4

In [79]: city_data[columns_numeric].sum()
Out[79]:

lat 1.512936e+05

Ing 7.843263e+04

pop 1.943721e+09

dtype: float64
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In [80]: city data[columns numeric].count()

Out[80]:

lat 7322
Ing 7322
pop 7322

dtype: int64

In [81]: city data[columns_numeric].median()

Out[81]:
lat 26.792730
Ing 18.617509

pop 61322.750000
dtype: floaté4

In [83]: city data[columns numeric].quantile(0.8)

Out[83]:
lat 46.852480
Ing 89.900018

pop  269210.000000
dtype: float64

THE PYTHON MACHINE LEARNING ECOSYSTEM

All these operations were applied to each of the columns, the default behavior. We can also get all these
statistics for each row by using a different axis. This will give us the calculated statistics for each row in the

dataframe.

In [85]: city data[columns _numeric].sum(axis = 1)
Out[85]:

3.095116e+03

1.509977e+04

2.016419e+05

4.994400e+04

1.009850e+04

B W NN R O

Pandas also provides us with another very handy function called describe. This function will calculate
the most important statistics for numerical data in one go so that we don’t have to use individual functions.

In [86]: city data[columns numeric].describe()
out[86]:

lat 1ng pop
count 7322.000000 7322.000000 7.322000e+03
mean 20.662876 10.711914 2.654631e+05
std 29.134818 79.044615 8.287622e+05
min -89.982894 -179.589979 -9.900000e+01
25% -0.324710 -64.788472 1.734425e+04
50% 26.792730 18.617509 6.132275e+04
75% 43.575448 73.103628 2.001726e+05
max 82.483323  179.383304 2.200630e+07
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Concatenating Dataframes

Most Data Science projects will have data from more than one data source. These data sources will mostly
have data that’s related in some way to each other and the subsequent steps in data analysis will require
them to be concatenated or joined. Pandas provides a rich set of functions that allow us to merge different
data sources. We cover a small subset of such methods. In this section, we explore and learn about two
methods that can be used to perform all kinds of amalgamations of dataframes.

Concatenating Using the concat Method

The first method to concatenate different dataframes in pandas is by using the concat method. The majority
of the concatenation operations on dataframes will be possible by tweaking the parameters of the concat
method. Let’s look at a couple of examples to understand how the concat method works.

The simplest scenario of concatenating is when we have more than one fragment of the same dataframe
(which may happen if you are reading it from a stream or in chunks). In that case, we can just supply the
constituent dataframes to the concat function as follows.

In [25]: city datal = city data.sample(3)

In [26]: city data2 = city data.sample(3)

In [29]: city data combine = pd.concat([city datai,city data2])
In [30]: city data_combine

Out[30]:

city city ascii lat 1lng pop \

4255 Groningen Groningen 53.220407 6.580001 198941.0

5171 Tambov Tambov 52.730023 41.430019 296207.5

4204 Karibib Karibib -21.939003 15.852996 6898.0

4800 Focsani Focsani 45.696551 27.186547 92636.5

1183 Pleven Pleven 43.423769 24.613371 110445.5

7005 Indianapolis Indianapolis 39.749988 -86.170048 1104641.5

country iso2 iso3 province

4255 Netherlands NL NLD Groningen

5171 Russia RU RUS Tambov

4204 Namibia NaN NAM Erongo

4800 Romania RO ROU Vrancea

1183 Bulgaria BG BGR Pleven

7005 United States of America US USA Indiana

Another common scenario of concatenating is when we have information about the columns of same
dataframe split across different dataframes. Then we can use the concat method again to combine all the
dataframes. Consider the following example.

In [32]: df1 = pd.DataFrame({'col1': ['col10', 'coli1', 'coli2', 'coli3'],
"col2': ['col20', 'col21', 'col22', 'col23'],
'col3': ['col30', 'col31', 'col32', 'col33'],
'colq': ['cola0', 'col4a1', 'col42', 'col43']},

index=[0, 1, 2, 3])
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In [33]
Out[33]

col1
0 colio
1 coli11
2 col12
3 coli13

In [34]:

In [é;j;

: df1

col2 col3 col4
0120 col30 col4o
col21 col31 col41
col22 col32 col42
col23 col33 col43

out[37]:

col1
col1o0
coli11
col12
coli3
NaN
NaN

~NownN e O

col2 col3 col4
c0l20 col30 col4o0
col21 col31 col41
col22 col32 col42
col23 col33 col43

NaN  NaN  NaN

NaN  NaN  NaN

df4 = pd.DataFrame({'col2":

'Colq’:
'col6':
index=[2,

pd.concat([df1,df4], axis=1)

Col4 col2
NaN  NaN
NaN  NaN

Col42 col22
Col43 col23
Col46 col26
Col47 col27
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['col22', 'col23', 'col26', 'col27'],
['Cola2', 'Cola3', 'Col4a6', 'Cola7'],
['col62', 'col63', 'col6b', 'col67']},
3, 6, 7])

col6
NaN
NaN
col62
col63
col66
col67

Database Style Concatenations Using the merge Command

The most familiar way to concatenate data (for those acquainted with relational databases) is using the
join operation provided by the databases. Pandas provides a database friendly set of join operations for
dataframes. These operations are optimized for high performance and are often the preferred method for
joining disparate dataframes.
Joining by columns: This is the most natural way of joining two dataframes. In this method, we have
two dataframes sharing a common column and we can join the two dataframes using that column. The
pandas library has a full range of join operations (inner, outer, left, right, etc.) and we will demonstrate
the use of inner join in this sub-section. You can easily figure out how to do the rest of join operations by
checking out the pandas documentation.
For this example, we will break our original cities data into two different dataframes, one having the
city information and the other having the country information. Then, we can join them using one of the
shared common columns.

In [51]:
In [52]:

Out[52]

In [53]:

¢ (223, 2)

Out[53]:

iso3 country

0 AFG Afghanistan
33 ALD Aland

34 ALB Albania

60 DZA Algeria

111 ASM

American Samoa

country data.head()

country data = city data[['iso3','country']].drop duplicates()
country data.shape
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In [56]: del(city data['country'])

In [59]: city data.merge(country data, 'inner').head()
out[59]:

city city ascii lat 1lng pop iso2 iso3 \

0 Qal eh-ye Now Qal eh-ye 34.983000 63.133300 2997 AF AFG

1 Chaghcharan Chaghcharan 34.516701 65.250001 15000 AF AFG
2 Lashkar Gah Lashkar Gah 31.582998 64.360000 201546 AF AFG
3 Zaranj Zaranj 31.112001 61.886998 49851 AF AFG

4 Tarin Kowt Tarin Kowt 32.633298 65.866699 10000 AF AFG

province country

0 Badghis Afghanistan
1 Ghor Afghanistan

2 Hilmand Afghanistan
3 Nimroz Afghanistan
4 Uruzgan Afghanistan

Here we had a common column in both the dataframes, is03, which the merge function was able to
pick up automatically. In case of the absence of such common names, we can provide the column names
to join on, by using the parameter on of the merge function. The merge function provides a rich set of
parameters that can be used to change its behavior as and when required. We will leave it on you to discover
more about the merge function by trying out a few examples.

Scikit-learn

Scikit-learn is one of the most important and indispensable Python frameworks for Data Science and
Machine Learning in Python. It implements a wide range of Machine Learning algorithms covering major
areas of Machine Learning like classification, clustering, regression, and so on. All the mainstream Machine
Learning algorithms like support vector machines, logistic regression, random forests, K-means clustering,
hierarchical clustering, and many many more, are implemented efficiently in this library. Perhaps this
library forms the foundation of applied and practical Machine Learning. Besides this, its easy-to-use API and
code design patterns have been widely adopted across other frameworks too!

The scikit-learn project was initiated as a Google summer of code project by David Cournapeau.
The first public release of the library was in late 2010. It is one of the most active Python projects and is
still under active development with new capabilities and existing enhancements being added constantly.
Scikit-learn is mostly written in Python but for providing a better performance some of the core code is
written in Cython. It also uses wrappers around popular implementations of learning algorithms like logistic
regression (using LIBLINEAR) and support vector machine (using LIBSVM).

In our introduction of scikit-learn we will first go through the basic design principles of the library
and then build on this theoretical knowledge of the package. We will implement some of the algorithms
on sample data to get you acquainted with the basic syntax. We leverage scikit-learn extensively in
subsequent chapters, so the intent here is to acquaint you with how the library is structured and its core
components.
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Core APIs

Scikit-learn is an evolving and active project, as witnessed by its GitHub repository statistics. This
framework is built on quite a small and simple list of core API ideas and design patterns. In this section we

will briefly touch on the core APIs on which the central operations of scikit-learn are based.

Dataset representation: The data representation of most Machine Learning tasks
are quite similar to each other. Very often we will have a collection of data points
represented by a stacking of data point vectors. Basically considering a dataset,

each row in the dataset represents a vector for a specific data point observation. A
data point vector contains multiple independent variables (or features) and one or
more dependent variables (response variables). For example, if we have a linear
regression problem which can be represented as [(X,, X,, X, X,, ..., X ), (¥)] where
the independent variables (features) are represented by the Xs and the dependent
variable (response variable) is represented by Y. The idea is to predict Y by fitting

a model on the features This data representation resembles a matrix (considering
multiple data point vectors), and a natural way to depict it is by using numpy arrays.
This choice of data representation is quite simple yet powerful as we are able to
access the powerful functionalities and the efficient nature of vectorized numpy array
operations. In fact recent updates of scikit-learn even accept pandas dataframes as
inputs instead of explicitly needing you to convert them to feature arrays!

Estimators: The estimator interface is one of the most important components of
the scikit-1learn library. All the Machine Learning algorithms in the package
implement the estimator interface. The learning process is handled in a two-step
process. The first step is the initialization of the estimator object; this involves
selecting the appropriate class object for the algorithm and supplying the parameters
or hyperparameters for it. The second step is applying the fit function to the

data supplied (feature set and response variables). The fit function will learn the
output parameters of the Machine Learning algorithm and expose them as public
attributes of the object for easy inspection of the final model. The data to the fit
function is generally supplied in the form of an input-output matrix pair. In addition
to the Machine Learning algorithms, several data transformation mechanisms are
also implemented using the estimators APIs (for example, scaling of features, PCA,
etc.). This allows for simple data transformation and a simple mechanism to expose
transformation mechanisms in a consistent way.

Predictors: The predictor interface is implemented to generate predictions,
forecasts, etc. using a learned estimator for unknown data. For example, in the case
of a supervised learning problem, the predictor interface will provide predicted
classes for the unknown test array supplied to it. Predictor interface also contains
support for providing quantified values of the output it supplies. A requirement of a
predictor implementation is to provide a score function; this function will provide
a scalar value for the test input provided to it which will quantify the effectiveness
of the model used. Such values will be used in the future for tuning our Machine
Learning models.
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e Transformers: Transformation of input data before learning of a model is a very
common task in Machine Learning. Some data t