#### МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

ЦЕНТР СРЕДНЕГО СПЕЦИАЛЬНОГО, ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

А. АБДУКАРИМОВ, А. ГАФУРОВ, К. НИШАНБАЕВ, Д. ХАМИДОВ, Б. ТАШМУХАМЕДОВ, О. ЭШАНКУЛОВ

# БИОЛОГИЯ

Учебник для академических лицеев и профессиональных колледжей

Издание 2-е, исправленное

#### Авторы:

глава I — акад. АН РУз Абдукаримов А. А. введение, главы II, III и §§ 16—19 главы IV— проф. Гафуров А. Т. §§ 14—16 главы IV — проф. Нишанбаев К. Н. глава V — акад. АН РУз Ташмухамедов Б. А., проф. Нишанбаев К. Н. глава VI — акад. АН РУз Хамидов Д. Х., проф. Нишанбаев К. Н.

#### Рецензенты:

- Г. Дж. Джалалов, Р. Н. Бабаева кандидаты биологических наук, преподаватели академического лицея при Втором Ташкентском государственном медицинском институте
- Т. Салиева кандидат биологических наук, преподаватель лицея-интерната при Ташкентском государственном техническом университете

**Биология:** Учебник для учащихся акад. лицеев и проф. колледжей // Коллектив авторов: А.А. Абдукаримов, А.Т. Гафуров, К.Н. Нишанбаев и др. — Ташкент: «Sharq», 2009. — 216 с.

Настоящий учебник является логическим продолжением учебника биологии для 9 класса общеобразовательной школы. В нем представлены знания о зарождении и развитии органического мира, взаимодействии организмов с внешней средой, биосфере, месте человека в биосфере, об изменчивости наследственности микроорганизмов, растений и животных методами генной инженерии и использовании их в промышленных масштабах. Для самостоятельного овладения знаниями и развития логического мышления учащихся задания приводятся не в конце, а в начале каждой темы.

BBK 28.02ya 722+20.1 y a 722

ISBN 978-9943-00-191-6

#### © Главная редакция ИПАК «Sharq». 2007. 2009.

#### **ВВЕДЕНИЕ**

Биология (от греч. bios — жизнь, logos — наука) — наука о жизни. Существуют молекулярный, клеточный, организменный, популяционно-видовой, биогеоценозный, биосферный уровни организации жизни. Любое живое существо, каким бы сложным строением оно ни обладало, состоит из биомолекул — нуклеиновых кислот, белков и других органических веществ. Начиная с молекулярного уровня проявляются специфические свойства жизни — обмен веществ и энергии, передача наследственной информации.

Клетка является структурной, функциональной и развивающейся единицей всех живых существ. На клеточном уровне организации жизни не только происходят обмен веществ и энергии, передача наследственной информации, но и обеспечивается целостность живого.

Единицей организменного уровня считается индивид. На этом уровне, помимо отмеченных выше свойств, присущих жизни, наблюдаются индивидуальное развитие и смерть. На организменном уровне организации формируется система органов, выполняющих различные функции.

Единицей популяционно-видового уровня организации жизни считается популяция. Обычно под популяцией понимается устойчивая группа организмов, приспособленная к обитанию на определенном участке распространения вида, дающая потомство при свободном взаимном скрещивании и относительно обособленная от другой группы организмов данного вида. Близкие популяции, соединяясь, образуют биологический вид.

Начиная с популяционно-видового уровня организации жизни происходит эволюционное обновление. В природе каждый вид существует не обособленно, а в постоянной связи с другими видами, с неорганической природой.

Относительно стабильная система, которая сложилась в процессе исторического развития видов, относящихся к различным систематическим группам и различающихся неодинаковой сложностью строения, совместно с неорганической природой, называется биогеоценозом. Биогеоценозный уровень является саморегулирующейся биологической системой. Совокупность биогеоценозов образует биосферный уровень организации жизни, который охватывает все жизненные формы и виды на Земле. На этом уровне организации

жизни происходят круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Система биологических наук. В зависимости от объекта исследования биологическая наука подразделяется на ряд отраслей. Ботаника является наукой о растениях, зоология — о животных, микробиология — о микроорганизмах, гидробиология — об организмах водной среды, палеонтология — об ископаемых организмах, а экология — о связи между организмом и средой. В зависимости от отдельных аспектов живых организмов биология также подразделяется на различные отрасли. Так, анатомия изучает строение органов организмов, физиология — их функции, эмбриология развитие эмбриона, систематика — систематические группы организмов, их родственные взаимосвязи. Некоторые отрасли биологии появились благодаря сотрудничеству ее с другими естественными науками. Таковыми являются биофизика, изучающая физико-химические процессы, протекающие в биологических системах, биохимия — наука, изучающая химический состав организмов и протекающие в них химические процессы. Одними из направлений биологии являются бионика, цель которой состоит в создании технических систем на основе использования специфических особенностей строения и функций организмов, их органов, и биотехнология, обеспечивающая применение биологических процессов, протекающих в живых организмах, на производственных предприятиях.

**Методы научного исследования биологии. В** различных отраслях биологии широко применяются следующие методы научного исследования.

Метод наблюдения позволяет описать и проанализировать явления, происходящие в организмах и в окружающей их среде. Данный метод использовался на начальных этапах развития биологии, однако и сегодня он не утратил своего значения и широко применяется в ботанике, зоологии, экологии и во многих других отраслях биологии. Сходства и различия разных систематических групп, сообществ организмов, их строения, функций и составных частей изучаются с помощью сравнительного метода. Этот метод используется в систематике, морфологии анатомии, палеонтологии, эмбриологии и прочих отраслях науки. С его помощью была создана клеточная теория, открыты биогенетический закон, закон гомологических рядов в наследственной изменчивости.

Закономерности возникновения и развития различных систематических групп, организмов и их органов в историческом процессе выявляются путем применения *исторического метода*. С его помощью было создано учение об эволюционном развитии органического мира. Наблюдения за строением, жизнедеятельностью

живых организмов в условиях, созданных с определенной целью, осуществляются с помощью экспериментального метода. Этот метод позволяет гораздо глубже исследовать сущность поведения, строение и особенности организмов. В последнее время развитие электронновычислительной техники диктует необходимость использования в биологических исследованиях метода моделирования. Сущность его состоит в изучении какого-либо явления живой природы или его важнейших особенностей путем воспроизведения их модели. Созданную модель преобразуют с помощью математических знаков и на ЭВМ определяют изменения, которые могут происходить с этой моделью через определенные промежутки времени. Преимущество метода моделирования состоит в том, что он позволяет предсказывать явления живой природы.

Проблемы биологической науки. В биологической науке существует ряд нерешенных проблем. Первая из них — возникновение жизни, вторая — появление человека, третья — изучение механизмов головного мозга с целью познания закономерностей мышления и памяти; четвертая — изучение развития по генетической информации тканей, органов и организма животных и человека в период эмбрионального развития, пятая — определение регуляторных функций одноклеточных и многоклеточных организмов, шестая — продление жизни человека.

Значение биологической науки. В настоящее время перед человечеством стоит ряд проблем, одна из которых — продовольственная. Известно, что численность населения в мире ежегодно увеличивается. К началу XXI века численность населения нашей планеты превысила 6 млрд человек. Каждый человек для нормального существования должен получать 100—120 г белка в сутки, между тем большинство населения в день потребляет не более 50— 60 г белка. Ошущается недостаток жизненно необходимых для человека продуктов, содержащих жиры и углеводы. Следовательно, первостепенной задачей биологической науки является решение теоретических и практических проблем, связанных с удовлетворением потребности людей в продуктах питания. В этой связи весьма эффективным является использование в селекции, помимо традиционных методов гибридизации и отбора, методов генной инженерии — синтеза, пересадки генов, гибридизации соматических клеток, создания аллофенных организмов и др.

Вторая задача биологической науки связана со здоровьем человека.

По мнению ученых, проводящих исследования в области генетики человека, в настоящее время существует свыше 4000 наследственных болезней, которые связаны с нарушениями функции хромосомных и генных структур. Весьма важными представляются изучение гене-

тики наследственных болезней человека, разработка и практическое внедрение мер по их профилактике. Положительное решение этой проблемы тесно связано не только с исследованием генетики человека, но и с развитием генной инженерии и биотехнологии.

Одно из опаснейших явлений в настоящее время — постепенное обеднение природы, что особенно отчетливо выражается в ежегодном сокращении полезных видов растений и животных. Только в Узбекистане свыше 400 видов растений и 400 видов животных являются редкими.

В последнее время за счет распространения новых сортов растений и пород животных сокращаются, а порой и полностью исчезают выведенные народной селекцией и хорошо приспособленные к местным условиям сорта и породы. В частности, в Европе 115 из 175 местных пород животных находятся на грани полного исчезновения.

Следовательно, еще одна из проблем, стоящих перед биологической наукой, состоит в разработке и практическом внедрении методов охраны генофонда диких и одомашненных животных и культурных растений.

Строительство новых городов и промышленных центров, научно-технический прогресс, применение в сельском хозяйстве и в быту различных химических веществ, промышленные, транспортные и бытовые отходы — все это приводит к усиленному загрязнению природы. В деле охраны природы весьма актуальным является создание в сельском хозяйстве сортов хлопчатника, самопроизвольно сбрасывающих листву, внедрение севооборота, разработка и практическое применение биологических методов борьбы с паразитами, вредными насекомыми и другими организмами, в частности, методов предупреждения загрязнения воды и воздуха, эрозии и засоления почвы.

#### Задания

- 1. Ознакомьтесь с оглавлением учебника. Сколько глав и параграфов он включает?
- 2. Запомните заголовки и последовательность глав.
- 3. Пролистайте учебник, обратите внимание на рисунки и таблицы. Определите, сколько в нем рисунков и таблиц.
- 4. Кто является авторами учебника? Когда и каким издательством издан учебник? Выскажите учителю свое мнение об учебнике.

В последующем задания будут приводиться перед новой темой. Это позволит вам самостоятельно изучить учебный материал и закрепить знания.

Задания следует выполнять в основном дома и частично в классе.

#### Глава I

#### ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ И БИОТЕХНОЛОГИЯ

Усвоение изложенного ниже учебного материала должно основываться на знаниях, полученных из глав учебника биологии для 9 класса «Многообразие органического мира», «Основы цитологии», «Химические основы жизненных процессов», «Основы генетики».

В настоящей главе излагаются сведения о генетической инженерии, объектах исследования этой науки, истории изучения материальных основ наследственности, явлениях трансформации, трансдукции, блуждающих генетических элементах, методах и оборудовании генетической инженерии, получении с их помощью рекомбинантных ДНК, клонировании генов, создании трансгенных организмов. На основании этих сведений приводятся понятия о биотехнологиях целенаправленного изменения наследственности растений и животных, результаты, полученные в Узбекистане в области генетической инженерии и биотехнологии.

#### Задания

- I. Прочитайте текст § 1.
- $\Pi$ . Рассмотрите рис. 1 6 и поясните их содержание.
- III. Ответьте на вопросы.
  - 1. Что изучает генетическая инженерия?
  - 2. Расскажите о возникновении и задачах генетической инженерии.
  - 3. Как образуются штаммы?
  - 4. Может ли мутировать молекула ДНК, поступившая извне в процессе трансформации?
  - Какие явления могут уберечь бактериальную клетку от поражения (лизиса) фагом?
  - В каком случае при трансдукции не происходит мутация наследственности бактерии?
  - 7. Какова роль фагов в трансдукции?

#### IV. Определите правильные ответы в тестовых заданиях.

- 1. Какое из следующих открытий обеспечило усиленное развитие генетической инженерии?
  - А) автоматический синтез отрезка ДНК и определение последовательности нуклеотидов; В) выявление ферментов, соединяющих отрезки ЛНК друг с другом:
  - С) открытие электрофореза;
  - D) выявление рестриктаз;

- Е) в с е ответы дополняют друг друга.
- 2. Когда исчезают материальные различия м е ж д у молекулами ДНК живых организмов?
  - А) при расщеплении молекулы ДНК на специфические отрезки;
  - В) при повторном соединении отрезков молекулы ДНК;
  - G) при делении клеток;
  - D) при репликации ДНК;
  - Е) при очищении клетки ДНК от других веществ.
- 3. Что называется штаммом бактерии?
  - А) бактериальные клетки разных видов, отличающиеся друг от друга по отдельным генам:
  - В) бактериальные клетки разных видов, схожие м е ж д у собой по отдельным генам;
  - С) бактериальные клетки одного вида, различающиеся м е ж д у собой по отдельным генам;
  - D) бактериальные клетки одного вида, схожие м е ж д у собой по отдельным генам;
  - Е) нет правильного ответа.
- 4. Что является причиной превращения непатогенного пневмококка в патогенный?
  - А) молекула ДНК; В) молекула белка; С) факторы внешней среды;
  - D) липиды; E) все перечисленные.
- 5. Укажите процесс, обусловливающий изменение наследственности клетки.
  - А) транскрипция; В) трансляция; С) модификация;
  - D) репликация; E)трансформация.
- 6. Что называется литической реакцией фагов?
  - А) размножение лизогенных бактерий;
  - В) гибель бактерии, пораженной фагом;
  - С) соединение наследственных молекул фага и бактерии;
  - D) переход фагов в неактивное состояние;
  - Е) выживание бактериальных клеток, пораженных фагом.

#### § 1. ПОНЯТИЕ О ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ

Геном называется последовательность нуклеотидов в цепи ДНК, ответственная за синтез одной молекулы белка. Несколько генов, почти схожих друг с другом по структуре и участвующих в регулировании последовательности сложного биологического процесса, образуют совокупность или семейство генов.

Манипулирование генами или совокупностью генов организма в интересах человека называется *генной* или *генетической инженерией*.

Целью генной инженерии является изменение строения генов, их расположения в хромосоме и регулирование их деятельности в соответствии с потребностями человека. Для достижения этой цели

применяются различные методы, позволяющие осуществлять в промышленных масштабах производство белков, создавать новые сорта растений и породы животных, наиболее отвечающие требованиям, диагностировать и лечить различные инфекционные и наследственные болезни человека.

Генетическая инженерия (генная инженерия) возникла в результате открытия энзимов, специфическим образом разделяющих материальную основу наследственности — молекулу ДНК на отрезки и соединяющих эти отрезки концами друг с другом, а также электрофоретического метода, позволяющего с высокой точностью разделять по длине отрезки ДНК. Создание методов и оборудования для определения специфической последовательности нуклеотидов, образующих молекулу ДНК, а также для автоматического синтеза любого желаемого отрезка ДНК обеспечило развитие генетической инженерии быстрыми темпами.

#### Объекты исследования генетической инженерии

Объектами исследования генетической инженерии являются вирусы, бактерии, грибы, животные (в том числе организм человека) и растительные клетки. После очищения молекулы ДНК этих живых существ от других веществ клетки материальные различия между ними исчезают. Очищенная молекула ДНК может быть расщеплена с помощью энзимов на специфические отрезки, которые затем при необходимости можно с помощью сшивающих энзимов соединить между собой. Современные методы генетической инженерии позволяют размножать любой отрезок ДНК или заменять любой нуклеотид в цепи ДНК другим. Разумеется, эти успехи достигнуты в результате последовательного изучения закономерностей наследственности.

История изучения материальных основ наследственности. Вели-

кий французский ученый Луи Пастер, разработав метод получения клонов, первым показал, что бактерии разнообразны, обладают наследственностью и их свойства тесно связаны с последней (рис. 1, 2).

В 1952 г. Джошуа и Эстер Ледерберги, используя метод копирования (репликации) колоний бактерий, доказали существование самопроизвольных мутаций в бактериях (рис.3). Они разработали метод, позволяющий выделять мутантные клетки с помощью репликации.

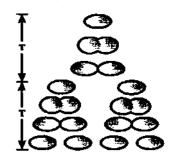



Рис. 1. Рост и размножение бактерий. Т — время, в течение которого бактериальная клетка делится один раз.



Рис. 2. Клоны бактерий, образованные в резульв чашке Петри, видны невооруженным глазом.

Бактерии олного вила, различающиеся межлу собой отлельными генами, называются штаммами. Названия штаммам лаются с учетом их генетических свойств. Например, штамм lac - (лак-минус) — это штамм, не имеющий полноценного гена. усваивающего лактозу, и не синтезирующий полноценный фермент. Штаммы образуются в результате мутаций ДНК. приволящих к изменению функций отдельных генов. Совокупность клеток, тате деления бактериальной возникших в результате последовательклетки на поверхности пи- ного деления и размножения одной тательной среды (агар-агар) бактерии определенного штамма, называется клоном этого штамма. Наследственность бактериальных клеток, содержащихся в одном клоне, одинакова.

Для клонирования (искусственного размножения) бактерий используются специальные питательные среды, в состав которых должны обязательно входить: 1) соединения, содержащие углерод, азот, кислород, волорол: 2) неорганические соелинения (различные соли): 3) факторы роста. На рост и развитие микроорганизмов, кроме состава питательной среды, большое влияние оказывает также ее физико-химическое состояние (рН, осмотические свойства. вязкость). Питательная среда, отвечающая свойствам размножаемой бактерии, называется оптимальной. Исхоля из свойств выращиваемых микроорганизмов, используют различные питательные среды. В оптимальной среде в качестве источника азота применяют минеральные или органические соелинения или пептоны. Пептоны представляют собой смесь полипептидов, дипептидов и аминокислот и являются продуктом, образующимся в результате неполного расшепления белков. В качестве источника углерола используются углеводы, спирт и органические кислоты. Минеральные соединения определяют осмотические свойства среды и являются катализатором биохимических реакций, протекающих в клетке.



Рис. 3. Метод получения реплик. Стерилизованную бархатную ткань натягивают на поверхность деревянного приспособления и прикладывают к колонии бактерий, растущих на поверхности чашки Петри, предназначенной для пересадки реплик. Затем колонии переносят в чистую чашку Петри с искусственной питательной средой.

По свойствам, составу и залачам питательные среды делятся на несколько групп: 1) по консистенции (тверлости — жилкости): а) жилкие. б) твердые, в) полужилкие: 2) по составу: а) простые (минимальные), в составе которых солержатся сахар или глиперин, аммонийные соли и сульфаты и отсутствуют аминокислоты, витамины, пурин и пиримилин, так как бактерии сами синтезируют их: б) сложные (максимальные) — в связи с тем, что микроорганизмы, подвергшиеся мутации, теряют способность синтезировать отдельные ферменты, в питательную среду добавляют необхолимые пурин. пиримилин. аминокислоты и витамин: 3) по выполняемой задаче: а) селективные — на этих средах растут только определенные микроорганизмы. Например, на висмутово-сульфилном агаре развиваются и размножаются клоны бактерии Salmonella, а рост и развитие бактерий. вызывающих лизентерию, снижаются: б) насышенные — усиливают рост определенных бактерий и препятствуют росту других: 4) синтетические питательные среды, приготовленные из определенных химических соелинений

Под влиянием внешней среды частота мутаций возрастает. Специальные методы позволяют увидеть невооруженным глазом клоны новых штаммов, образовавшихся в результате мутаций.

В 1915 г. Туорт и Д'Эррель доказали, что фаги (фаги - вирусы. размножающиеся в бактериях), самопроизвольно размножаясь внутри бактерий, могут их уничтожить. Микробиологи возлагали належды на использование фагов против микробов-возбудителей опасных инфекционных заболеваний. Однако, как отмечалось выше. бактерии обладают устойчивостью к фагам вследствие самопроизвольных спонтанных мутаций. Наследование этих мутаций предохраняет бактерии от уничтожения со стороны фагов.

Размножаясь внутри клетки, вирусы и фаги могут погубить ее или, внедрившись в геном клетки, изменить ее наследственность. Для изменения наследственности организма широко используются процессы трансформации и трансдукции.

Генетическая трансформация. Перенос в определенных условиях любой части наследственной молекулы одного организма в наследственную молекулу другого организма называется трансформацией. Процесс трансформации был открыт в 1928 г. английским микробиологом Ф. Гриффитом. Этот процесс Гриффит наблюдал на двух видах штаммов пневмококковых бактерий (S и R). Штамм S имел полисахарилную оболочку, поверхность клетки была гладкой, а штамм R не имел полисахаридной оболочки, и поверхность клетки была шероховатой (буква S — от англ. smooth гладкий, R— от *англ*. rough — шероховатый). Полисахаридная оболочка штамма S бактерии вызвала пневмококковое заболевание и привела к гибели животных. Штамм R не был возбудителем болезни, поэтому мыши, зараженные этим штаммом, не погибли. При нагревании болезнетворных S-штаммов они погибали, и при

введении клеток убитого S-штамма мышам не вызывали заболевания.

При введении мышам убитых нагреванием S-штаммов бактерий вместе с неболезнетворными живыми клетками R-штамма животные погибали. В крови погибших мышей были найдены живые клетки S-штамма бактерий. Сущность этого явления показана на рис. 4. Видно, что какое-то вещество переходит из клеток S-штамма пневмококка в R-штамм и изменяет его наследственность. Под воздействием этого вещества отдельные клетки R-штамма превратились в S-штамм, то есть трансформировались. Гриффит не смог объяснить полученные в опытах результаты.

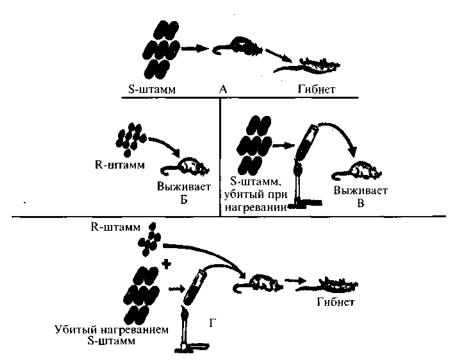



Рис. 4. Схематическое изображение опыта Гриффита: A — мышь, зараженная патогенной (болезнетворной) пневмококковой бактерией (S-штамм), погибает; B — мышь, зараженная непатогенной (7?-штамм) пневмококковой бактерией, выживает; B — мышь, зараженная патогенной бактерией, убитой нагреванием, выживает;  $\Gamma$  — при смешивании S- и  $\Pi$ -штаммов бактерий и введении этой смеси мыши она погибает. B ее крови обнаруживается живой S-штамм. Это свидетельствует о том, что при введении в организм мыши смеси, состоящей из непатогенного R- и убитого R-штаммов, ген наследственности молекулы R-штамма, вызывающий болезнь, переносится в наследственную молекулу живого R-штамма и придает ей свои свойства, R. е. происходит трансформация.

Данное явление было объяснено в 1944 г. О. Эйвери с сотрудниками. Для этого они расщепили пневмококковую клетку S-штамма на отдельные фракции, проверили болезнетворную активность каждой фракции. Было установлено, что только при смешивании выделенной из S-штамма молекулы ДНК с R-штаммом непатогенный R-штамм трансформируется в вызывающий болезнь S-штамм (рис. 5). Следовательно, было доказано, что трансформация R-штамма в S-штамм зависит от молекулы ДНК.

Позднее были созданы методы трансформации путем смешения в определенных условиях клеток с подлежащими трансформации отдельными хрбмосомами или отдельными генами.

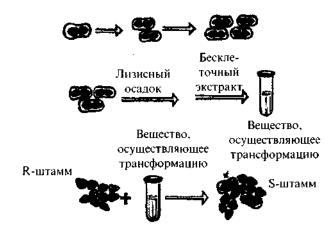



Рис. 5. Трансформация R-штамма в S-штамм путем смешения R-штамма с бесклеточным экстрактом, выделенным при расшеплении бактериальных клеток из пневмококка S-штамма.

Таким образом, процесс трансформации представляет собой естественный процесс, который приводит к изменению наследственности клеток.

**Трансдукция.** Изучение процесса трансформации послужило толчком для открытия трансдукции — процесса переноса и рекомбинации бактериальных генов с помощью бактериофагов.

Процесс трансдукции был открыт в 1952 г. Н. Циндером и Дж. Ледербергом. До этого открытия было известно, что при внедрении наследственного материала (нуклеиновой кислоты) фагов в бактериальную клетку они начинают размножаться в ней, вызывая гибель клетки вследствие разрыва ее оболочки, то есть происходит лизис. Этот процесс называется литаческой реакцией фагов. Однако не всегда фаг, внедренный в бактериальную клетку, приводит клетку

к гибели. Это происходит в результате соединения молекулы ДНК фага, внедренной в бактериальную клетку, с особой последовательностью нуклеотидов молекулы ДНК бактерии. В результате фаг попадает под контроль наследственной программы бактериальной клетки и переходит в неактивное состояние — в состояние профага. Бактерии, имеющие в хромосоме профаг и способные свободно размножаться, называются лизогенными, а сам процесс — лизогенной реакцией (рис. 6).

При переходе из погибшей бактериальной клетки в здоровую фаг может перенести с собой какой-либо отрезок хромосомы погибшей бактерии. Перенос генов из одной бактериальной клетки в другую посредством фагов называется *трансдукцией*. Причем эти гены изменяют наследственность данной бактерии.

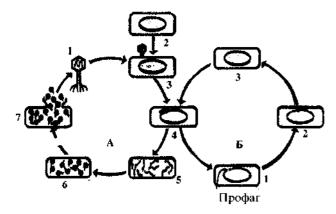


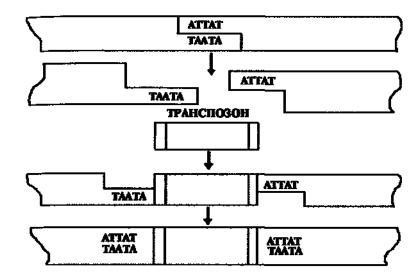

Рис. 6. Жизненный цикл фагов:

A- литический жизненный цикл фагов: /- фаг; 2- бактериальная клетка; 3- присоединение фага к бактериальной клетке; 4, 5- в отдельных бактериях фаги в течение 15-60 мин. при  $37^{\circ}$  С переходят в литический цикл, и молекула ДНК фага (хромосома) использует все имеющиеся в бактерии нуклеотидтрифосфаты, подвергается репликации и размножается; 6- хромосома фага синтезирует для себя белковую оболочку и присоединяет ее к своей поверхности, при этом образуются частицы фага; 7- в результате разрывается оболочка бактериальной клетки, и фаг, выйдя наружу, заражает другие бактерии; B- переход фагов в лизогенное состояние: A- хромосома фага рекомбинируется с хромосомой бактерии и переходит в состояние профага; A- в результате образуются лизогенные бактерии; A- в отдельных случаях под воздействием внешних факторов хромосома фага выделяется из лизогенной бактерии; A- литический (A) или лизогенный (B) жизненный цикл фагов продолжается.

#### Задания

- I. Прочитайте текст § 2.
- П. Объясните рис. 7—9.
- III. Ответьте на вопросы.
  - 1. Каково строение транспозонов?
  - 2. Из каких генов состоят в основном плазмилы?
  - 3. Какого рода плазмиды обеспечивают быструю выработку устойчивости бактерий к антибиотикам и каким образом?
  - 4. Объясните воздействие трансмиссибельных и автономных плазмид на наследственность клетки.
  - 5. Как отделяются друг от друга отрезки ДНК?
- IV. Определите правильные ответы в тестовых заданиях.
  - 1. К е м были впервые открыты транспозоны?
    - А) А. Корнберг; В) Дж. Бишоп;
    - С) А. Бухари; О) Г. Георгиев; Е) Б. Мак-Клинток.
- 2. Определите вещество, которое синтезируется геном, находящимся в центральной части молекул блуждающего генетического элемента.
  - А) трансфераза; В) транспозаза; С) топоизомераза;
  - D) хроматин;E) лигаза.
  - 3. Определите позицию транспозона.
    - А) исходное место транспозона;
    - В) переход транспозона;
    - С) внедрение транспозона в другое место генома;
    - D) расположение транспозона на новом месте;
    - Е) в с е перечисленные.
  - Плазмиды это ...
    - А) каллусная ткань;
    - В) дополнительная хромосома в виде кольца из двойной ц е п и ДНК;
    - С) ретротранспозоны;
    - D) рекомбинированные хромосомы;
    - Е) отрезок генома, разделенного рестриктазами.
  - 5. Какие плазмиды называются трансмиссибельными?
    - А) разрывающие специфическую последовательность ДНК основных хромосом клетки и способные к рекомбинации;
    - В) передающиеся по наследству;
    - С) теряющие свою самостоятельность после присоединения к основной хромосоме;
    - D) не способные к самостоятельной репликации от основной хромосомы;
    - Е) в с е ответы правильные.
  - 6. Что называют рестриктазами?
    - А) ген в центре транспозона;
    - В) фермент, соединяющий отрезки ДНК друг с другом;
    - С) ферменты, осуществляющие репликацию;
    - D) ферменты, разделяющие молекулу ДНК на отрезки;
    - Е) кольцо ДНК, кратно меньшее, ч е м основная хромосома.

### § 2. БЛУЖДАЮЩИЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ

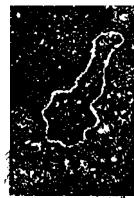

На протяжении многих лет существовало мнение, что локусы генов в геноме организма являются постоянными. Однако в 1950 г. американский ученый Барбара Мак-Клинток в процессе исследования наследственных признаков кукурузы открыла комплекс генов, меняющих свое местоположение. Она высказала мысль о блуждании генов в геноме. Блуждание генов не признавалось долгое время, до тех пор, пока эти элементы не были открыты другими американскими учеными Дж. Бишопом и А. Бухари у микроорганизмов и российским ученым Г. Георгиевым у животных. Такие блуждающие гены называются регуляторными генами или транспозонами. Каждый раз, когда гены меняют свое место, деятельность соседних генов меняется в ту или иную сторону.

Транспозоны состоят из очень простых элементов IS (от *англ*. inspertion sequences).

Хотя транспозоны имеют различную структуру, но все транспозонные молекулы содержат на обоих концах особые нуклеотидные последовательности, а в центральной их части содержится ген, обусловливающий синтез фермента транспозазы, который обрывает определенный участок молекулы ДНК с образованием на нем «липких» концов (рис. 7).

• Плазмиды, р е е т рикционные эндонуклеазы, методы генетической инженерии. У бактерий и у низших эукариотных клеток наряду с основными хромосомами имеются также дополнительные. Эти дополнительные мелкие хромосомы называются *плазмидами* (рис. 8, 9).

Плазмиды представляют собой кольцо из двойной цепи ДНК размером в сотни раз меньшим, чем у основных хромосом. Они состоят в среднем из 3—10 генов и делятся на две группы. Первая так же, как и транспозоны или наследственная молекула бактериофага, разрывает специфическую последовательность ДНК основных хромосом клетки и способна к рекомбинации. Такие плазмиды называются трансмиссибельными, т. е. плазмидами, которые передаются по наследству. После присоединения к основной хромосоме трансмиссибельные плазмиды теряют свою самостоятельность и не могут воспроизводиться самостоятельно от основной хромосомы. В то же время гены этих плазмид выполняют свою деятельность в основной хромосоме. При делении клетки гены трансмиссибельных плазмид передаются по наследству сцепленно с генами основной хромосомы. Плазмиды второй группы называются плазмидами с автономной репликацией. Они способны, не присоединяясь к




Р и с . 7. При присоединении транспозона к ДНК хромосомы фермент транспозаза разрезает молекулу с образованием «липких» концов.

основной хромосоме, самопроизвольно размножаться десятки и даже сотни раз. При делении бактерии или гриба распределение автономных плазмид между дочерними клетками происходит случайно. Вместе с тем автономные плазмиды могут переходить из одной клетки в другую через поры их оболочки или мембраны. Плазмиды состоят в основном из генов, синтезирующих ферменты,

расщепляющие антибиотики или ядовитые токсины. Поэтому плазмиды обеспечивают устойчивость бактерий, дрожжей и грибов к антибиотикам и ядовитым токсинам. Плазмидные гены, расщепляющие антибиотики, могут также переходить от одной плазмиды к другой в связанном с транспозонами состоянии. Этот молекулярный процесс значительно усиливает устойчивость болезнетворных микробов к действию антибиотиков.

**Рестрикционные эндонуклеазы.** Если в какую-нибудь клетку микроорганизма извне внедряется чужеродный генетический матео, риал, то он немедленно расшепляется пою действием фермента нуклеазы.



;p-,nc,.s, Bun плаз-

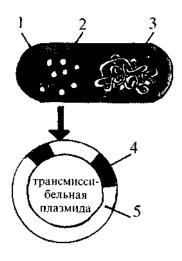



Рис. 9. В бактериальной клетке существуют плазмиды, которые подвергаются репликации автономно или же передаются по наследству после присоединения к хромосоме (трансмиссибельные плазмиды). Трансмиссибельные плазмиды также могут выделяться из хромосомы и функционировать как кольцевая молекула, но они не способны к самостоятельной репликации. /— бактерия; 2 — плазмиды; 3 — основная хромосома; 4 — нуклеотидная последовательность, приспособленная к присоединению к хромосоме; 5 — ген резистентности к антибиотикам.

Ферменты, разделяющие молекулу ДНК на мелкие части, называются разрывающими эндонуклеазами или рестриктазами. Каждая рестриктаза распознает четыре или более пары специфических последовательностей нуклеотидов, связывается с ними и разрывает молекулу ДНК. Отдельные рестриктазы разрезают двойную цепь ДНК на две части подобно ножницам.

Вместе с тем существуют также рестриктазы, которые разрывают двойную цепь молекулы ДНК с образованием «липких» концов. К их числу относятся рестриктазы Есо RI, Ват НІ (Эко-эр-один, бам-ашодин), приведенные в табл. 1. Видно, что эти рестриктазы по своим функциям подобны транспозазам. Поэтому, используя «липкие» концы, образованные этими рестриктазами, легче удается соединить отрезки разных ДНК между собой. Благодаря этим свойствам такие рестриктазы широко используются в генной инженерии. К настоящему времени получено в чистом виде и изучено более 500 различных рестриктаз.

Методы выделения высокомолекулярной ДНК из различных организмов в чистом виде, разделения ее соответствующей рестриктазой на отрезки с образованием «липких» концов и разделения образовавшихся отрезков методом электрофореза, выбора из различных отрезков тех, которые необходимы, и соединения их между собой с помощью фермента лигазы в заданном порядке являются самыми простыми и основными методами генной инженерии.

Отдельные рестриктазы, а также распознаваемые и разрезаемые ими нуклеотидные последовательности

| Микроорганизм                 | Сокращенное название | Нуклеотидная последовательность 5'— 3', 3'— 5' |
|-------------------------------|----------------------|------------------------------------------------|
| Bacillus amulolique faciens H | Bam HI               | G'GATCC<br>CCT AG'G                            |
| Esherichia coli<br>RY13       | Eco RI               | GʻAATTC<br>CTTAA'G                             |
| Haemophilus<br>aegyptius      | Hae III              | CC, CC<br>CC, CC                               |

#### Задания

- I. Прочитайте текст § 3, объясните рис. 10-12.
- II. Ответьте на вопросы.
  - 1. Во сколько этапов осуществляется генная инженерия?
  - 2. Какая группа плазмид целесообразна при клонировании генов?
  - 3. Каково значение плазмидного гена, расщепляющего антибиотики, в технологии клонирования генов?
  - 4. По какой причине ТДНК теряет свои функции при внедрении чужеродного гена в отрезок ТДНК, в котором находится Ті-плазмида?

#### III. Определите правильные ответы в тестовых заданиях.

- 1. С чем соединяется отрезок ДНК, выделенный из хромосомы при клонировании отрезка гетерологичной ДНК в составе плазмиды?
  - А) с молекулой рекомбинантной ДНК;
  - В) с геном, внедренным в бактериальную клетку;
  - С) с кольцевой плазмидой с двойной цепью ДНК:
  - D) с геном устойчивости к антибиотику;
  - Е) с рекомбинантной плазмидой.
- 2. Что используется в качестве вектора при клонировании отрезка ДНК?
  - А) транспозон;
  - В) молекула ДНК вируса;
  - С) молекула ДНК фага;
  - D) плазмида;
  - Е) все перечисленное.
- 3. Укажите порядок процесса изменения наследственности растения методом генной инженерии.
  - 1) берется трансгенное растение;
  - 2) векторная конструкция вводится в агробактерию;
  - 3) вырезается отрезок ТДНК плазмиды рестриктазой;
  - 4) ТДНК пересаживается в плазмиду pBR 322:

5) в отрезок ТДНК векторной конструкции пересаживается ч у ж е родный ген.

A) 1,2, 5,4, 3; B ) 3. 4, 5 , 1,2; C) 3.4.1, 2.5; D) 3, 4, 5, 2, 1; E) 1, 3, 4, 5, 2.

#### § 3. ПОЛУЧЕНИЕ РЕКОМБИНАНТНОЙ ДНК. КЛОНИРОВАНИЕ ГЕНОВ

Генная инженерия осуществляется в несколько этапов.

- 1. Определяют ген, представляющий интерес по его функциям, затем его выделяют, клонируют и изучают его структуру.
- 2. Выделенный ген соединяют (рекомбинируют) с ДНК какогонибудь фага, транспозона или плазмиды, имеющей способность рекомбинироваться с хромосомой, и таким путем создают векторную конструкцию.
- 3. Векторную конструкцию встраивают в клетку (трансформация) и получают трансгенную клетку...
- 4. Из трансгенной клетки в искусственных условиях можно получить зрелые организмы.

Получение рекомбинантной ДНК в искусственных условиях и клонирование генов впервые было осуществлено в 1972 г. американскими учеными Бойером и Коэном. Хромосомную ДНК бактерии E. coli и ее плазмиды они подвергали обработке в специальных пробирках ферментом рестриктазой Есо RI (Эко-эродин), образующей «липкие» концы. В связи с тем, что в составе кольцевой плазмиды содержится только одна специфическая нуклеотидная последовательность, которую распознает и разрезает фермент рестриктаза Есо RI, этот фермент разрезает двойную цепь ДНК плазмиды только в одном месте и переводит кольцевую плазмиду в открытое состояние с «липкими» концами. Молекула ДНК хромосомы разделяется на столько отрезков, сколько она содержит специфических нуклеотидных последовательностей, которые могут быть распознаны ферментом рестриктазой Есо RI. Отрезки ДНК в сильном электрическом поле электрофоретической установки разделяются по величине, и выделенные отрезки окрашиваются специальной краской. В результате образуются видимые невооруженным глазом наборы отрезков ДНК одной величины. Из электрофоретического геля можно выделить отрезок ДНК любой величины путем его растворения в воде. Таким способом Бойер и Коэн смешали в пробирке выделенный отрезок ДНК хромосомы с «липкими» концами и ДНК плазмиды, находящуюся в открытом состоянии, и сшили эти различные отрезки ДНК при помощи фермента лигазы с образованием ковалентной связи. В результате в

состав плазмиды был введен отрезок ДНК хромосомы. Таким образом была впервые создана рекомбинантная плазмида (рис. 10). В этой молекулярной конструкции ДНК плазмиды выполняет векторную (направляющую) функцию, поскольку, как указывалось выше, плазмиды могут рекомбинироваться в хромосомной ДНК. Эта векторная конструкция в силу наличия в ней гена устойчивости к антибиотикам была введена в бесплазмидную, т. е. неустойчивую к антибиотикам бактериальную клетку. Бактерии с рекомбинантными плазмидами в силу того, что они имеют ген устойчивости к антибиотикам, в отличие от бесплазмидных бактерий, не погибают в питательной среде, содержащей антибиотик. Поэтому в опытную пробирку вводится антибиотик и выделяется клон рекомбинантной бактерии, который затем выращивается. В каждой бактерии, составляющей данный клон, будет содержаться отрезок чужой (гетерологичной) ДНК, и этот отрезок может размножаться по мере размножения бактериальной биомассы. Кроме того, если рекомбинантная плазмида обладает способностью к автономной репликации, то отрезок чужой ДНК может размножаться еще десятки раз. Размножение чужой ДНК посредством векторной конструкции называется клонированием генов. В качестве вектора при клонировании отрезков ДНК могут быть использованы вирусные и фаговые молекулы ДНК или блуждающие генетические элементы.

Перестройка наследственности растений методами генной инженерии. Основной недостаток классического генетического метода изменения наследственности состоит в том, что при скрещивании двух организмов с разными генотипами происходит взаимная рекомбинация их ценных и не ценных в хозяйственном отношении генов. В результате в созданный сорт будут переходить, кроме тех генов, которые были желательны для генетика-исследователя, и гены, ухудшающие свойства сорта.

При применении методов генной инженерии данная проблема легко разрешается. Для этого в клетку растения, сорт которого хотят улучшить, вводится ценный ген и из этой клетки выращивается зрелое растение. Для

Р и с . 10 . Клонирование отрезка гетерологичной ДНК. / — отрезок ДНК, выделенной из хромосомы: 2— плазмида; 3 — ген резистентности к антибиотикам: 4 — рекомбинантная молекула ДНК; 5 -ген, введенный в бактериальную клетку; 6 — клетка. ' с рекомбинантной плазмидой в ы д е ляется по резистентности к антибиотикам. Остальные клетки в среде с антибиотиками погибают.

введения в клетку определенного гена в качестве векторной молекулы пользуются плазмидой почвенной бактерии Агробактериум. В природе при заражении этим видом бактерии растения повреждаются. В результате беспорядочного деления клеток зараженного растения на нем развивается опухоль, которая вызывается отрезком ТДНК (ДНК, вызывающая опухоль) генома Тіплазмиды. В основе появления опухоли лежит встраивание ТДНК в геном растительной клетки и изменение ею свойств клетки (рис. 11). Эта особенность ТДНК широко используется в генной инженерии.

Довольно большой размер Ті-плазмиды Агробактериума (более 20 тысяч нуклеотидных пар) несколько затрудняет ее использование в генной инженерии. Поэтому для перестройки наследственности растения методом генной инженерии при помощи рестриктазы получают отрезок ТДНК, плазмиды которого соединяют с плазмидой рВК 322 (пи-би-эр 322) и клонируют. Созданная искусственная плазмида несколько меньше, чем Ті-плазмида, и использование ее намного легче и эффективнее. Такие молекулы (созданные искусственные плазмиды) называются векторными конструкциями. На отрезок ТДНК векторной конструкции пересаживают растительный ген. В результате этого ТДНК теряет способность вызывать опухоль, так как она уже разделена на два отрезка чужеродным геном.

Векторная конструкция, содержащая расчлененные ТДНК и чужеродный ген, внедряется в безвредные для растения специальные штаммы Агробактериума, Ті-плазмида которого не содержит ТДНК. При заражении растений этими бактериями Ті-плазмида Агробак-

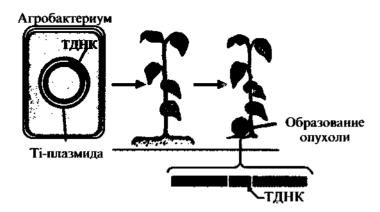
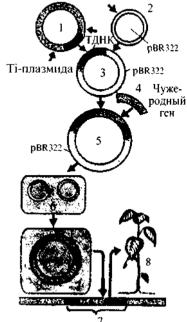



Рис. 11. Образование опухоли на растениях при заражении их некоторыми видами Агробактериума под воздействием отрезка ТДНК Ті-плазмиды. ТДНК, рекомбинируясь в хромосому растения, нарушает программу деления растительной клетки.


териум с помощью своего специального аппарата трансформации встраивает чужеродный ген в геном растения. В последние годы разработаны методы внедрения в растительную или животную клетку чужеродного гена в составе векторной конструкции с помощью сверхмощного электрического поля или генных пушек. Однако эти методы применяются только в особых случаях из-за их технической сложности и дороговизны. Из растительной клетки, подвергнутой трансформации, получают трансгенное растение (рис. 12).

В результате деления трансформированной растительной клетки образуется набор клеток, которые развиваются по определенной программе. Такой набор называется каллусной тканью. Отдельные клетки каллусной ткани под действием растительных гормонов или других регуляторных веществ начинают делиться по заданной программе. В результате из таких клеток поэтапно получают ткани растительного эмбриона и нормальное во всех отношениях, зрелое трансгенное растение. В хромосомах каждой его клетки содержится пересаженный ген. Поэтому когда разведение трансгенного растения производится половым путем, пересаженный чужеродный ген передается по наследству.

С помощью генной инженерии выведены сорта хлопчатника и картофеля, которые отличаются устойчивостью к коробочному червю и колорадскому жуку. В Институте генетики и экспериментальной биологии растений АН РУз созданы трансгенные формы хлопчатника.

Р и с . 12. Основные этапы получения трансгенного растения.

Путем соелинения Ті-плазмилы (1). полученной из Агробактериума, с плазмидой (2) с уникальным рестрикционным сайтом создается векторная конструкция (3). В отрезок ТДНК векторной конструкции рекомбинируется ч v ж о й г е н (4) и получается вектор (5) на основе Ті-плазмилы, не способной образовать опухоль. Этот вектор вводится в специальный штамм Агробактериума с Ті-плазмидой, не содержащей участок ТДНК (6). При выращивании в искусственных условиях созданной рекомбинантной агробактерии (7) в месте с протопластом растения вектор (8) рекомбинируется в геноме растения.



#### Задания

- I. Прочитайте текст § 4 и объясните рис. 13—15.
- II. Ответьте на вопросы.
  - 1. Какие существуют пути клонирования животных?
  - 2. Каковы преимущества гибридомной клетки?
  - 3. Как вы размножите гибридомные клетки для получения раздельных клонов гибридомных клеток, синтезирующих моноклональные антитела?
  - 4. Каково значение моноклональных антител?
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Как получают клоны растений?
    - А) размножением одной клетки в искусственных условиях;
    - В) перекрестным опылением растений;
    - С) вегетативным размножением черенкованием;
    - D) самоопылением растений;
    - E) A и C.
  - 2. Когда и кем впервые разработана биотехнология создания клонов высших животных?
    - А) в 1977 г. Гордоном; В) в 1977 г. Рослингом; С) в 1975 г. Келером; D) в 1977 г. Милынтейном; E) в 1977 г. Томсоном.
  - 3. Как называется клетка, полученная в результате соединения лимфоцитарной клетки, синтезирующей антитела, с раковой клеткой?
    - А) протопласт; В) эндолитическая; С) гибридома;
    - D) каллус: E) политения.
  - 4. В каких целях используются моноклональные антитела?
    - А) при диагностике болезней;
    - В) при получении поликлональных антител:
    - С) при клонировании генов; D) при получении гибридом; E) A.

# § 4. ИЗМЕНЕНИЕ НАСЛЕДСТВЕННОСТИ ЖИВОТНЫХ МЕТОДОМ КЛЕТОЧНОЙ ИНЖЕНЕРИИ. ПОЛУЧЕНИЕ ГИБРИДОМ

Достижения клеточной и генной инженерии нашли свое применение и при улучшении пород животных. Одной из первых в этом направлении является биотехнология получения в больших количествах яйцеклеток крупного рогатого скота с высокими хозяйственными и генетическими показателями. Известно, что у коров за один год образуется только одна, иногда две яйцеклетки, что не дает возможности быстро приумножать знаменитые породы крупного рогатого скота. Введение инъекций определенного гормона коровам, дающим высокие удои качественного молока, позволило добиться образования у опытных коров большого количества яйцеклеток. Эти клетки были выделены из матки коров и

оплодотворены в искусственных условиях. Образовавшиеся зиготы имплантированы в матку непородистых коров, не имеющих хозяйственно ценных показателей. В результате от непородистой коровы получено потомство ценной породы. Эта биотехнология применяется и в нашей стране.

Всемирно известная американская компания Монсанто, используя методы генной инженерии, начала производство гормона роста (growth hormone), который был инъецирован коровам. Это позволило добиться увеличения надоев молока. Продукция этой компании в настоящее время продается в продуктовых магазинах США.

Микроинъецирование зиготы (оплодотворенной яйцеклетки) различными генами и получение трансгенных мышей или крыс практикуется во многих лабораториях. В нашей стране под руководством академика Дж. Х. Хамидова, благодаря использованию этого метода, путем введения в зиготу кроликов гена гормона роста выведены трансгенные кролики, отличающиеся более быстрым ростом по сравнению с обычными.

**Клонирование животных.** Известно, что колония бактерий, образовавшаяся в результате деления одной клетки микроорганизма, называется клоном. Клоны растений получают в искусственных условиях культивированием одной клетки или черенкованием путем вегетативного размножения. Поскольку высшие животные не размножаются вегетативным путем, задача получения их клонов до недавнего времени считалась проблематичной. В 1977 г. английским ученым Дж. Гордоном была разработана биотехнология создания клонов высших животных (рис. 13—14).

В 1997 г. шотландским ученым Рослином был создан клон овцы, и это открытие наделало много шума. До этого эксперимента в зиготу с удаленным ядром пересаживалось ядро из другой эмбриональной клетки, и образовавшаяся трансплантная яйцеклетка имплантировалась в матку неродной матери. Отличие результатов опытов Рослина от опытов Гордона и других описанных выше экспериментов состоит в том, что он впервые добился получения зрелого организма путем введения в зиготу с удаленным ядром ядра, выделенного из соматической клетки зрелого организма.

<sup>1</sup> — оплодотворенная яйцеклетка; 2 — ядро, полученное из чужой клетки; 3 — микропилетка; 4 — пронуклеусы; 5 — поддерживающая пипетка.

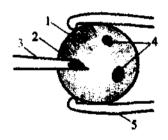
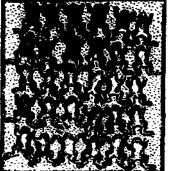


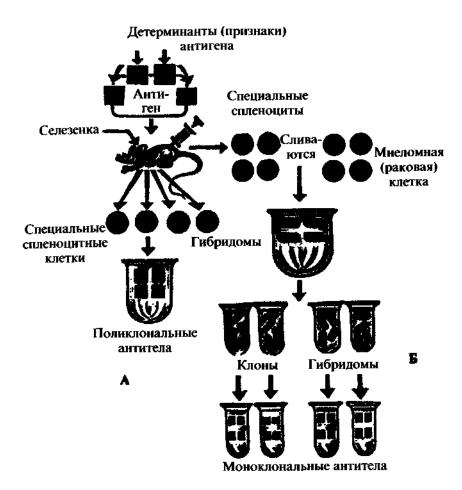

Рис. 13. Пересадка ядра в процессе получения клонов лягушки. Из оплодотворенной яйцеклетки удаляют оба пронуклеуса и в нее вводят ядро клетки другой лягушки.

Использование при создании клона ядра соматической клетки зрелого организма вызывает у отдельных состоятельных лиц желание создать своего клона. Вполне вероятно, что этим способом физически возможно создание клона любого человека, однако идентичность созданного клона своему оригиналу в духовном и умственном отношениях является весьма проблематичной.


**Гибридомы.** Развитие клеточной инженерии привело к возникновению биотехнологии получения гибридом и создало возможности для синтеза моноклональных антител.

Известно, что нормальные клетки делятся и размножаются очень медленно, и их деление ограниченно. Раковые же клетки обладают свойством неограниченного и быстрого роста. Биомассу нормальной клетки, синтезирующей любой полезный белок, можно размножать в искусственных условиях и получать эти белковые вещества в больших количествах. Однако в силу ограниченности биомассы нормальных клеток эти проблемы не находили своего решения.

В 1975 г. английские ученые Келер и Милыптейн путем слияния лимфоцитной клетки, синтезирующей в искусственных условиях антитела, с раковой клеткой, обладающей свойством неограниченного роста, создали гибридную клетку, не имеющую аналогов в природе. Эта клетка была названа гибридомой. В результате была достигнута возможность неограниченного размножения клеток, синтезирующих антитела в искусственных условиях (рис. 15).


. Гибридомная клетка может быть получена в результате целесо-





образного соединения любой клетки с раковыми клетками. В настоящее время эта технология может быть использована наравне с генной инженерией при синтезе белковых регуляторов, антител и гормонов. Поэтому возможности биотехнологии, основанной на клеточной инженерии, неограниченны.

Р и с . 1 4 . Клон лягушки, полученный путем пересадки (трансплантации) ядра мелкой белой лягушки в оплодотворенную яйцеклетку крупной черной.



Р и с . 15. Схема получения поликлональных и моноклональных антител. A — получение поликлонального антитела. Мышь иммунизируется каким-нибудь антигенным веществом. В клетках селезенки образуются специальные спленоциты, синтезирующие антитела отдельно для каждой антигенной группы вещества. Они могут распознавать только свою соответствующую антигенную группу. Образовавшаяся смесь различных антител называется поликлональными антителами. B — получение гибридом и синтез моноклонального антитела.

Спленоциты, образовавшиеся в ответ на антиген, сливаются с миеломной (раковой) клеткой, и получается гибридома. В результате раздельного размножения гибридом получаются их клоны. Каждый клонгибридома синтезирует моноклональное антитело, распознающее и связывающее только один антигенный признак. Моноклональные антитела используются для высокоточной диагностики заболеваний.

#### Задания

- I. Прочитайте текст § 5.
- II. Ответьте на вопросы.
  - 1. Расскажите о факторах, обусловливающих развитие генетической инженерии в Узбекистане.
  - 2. Расскажите об исследованиях и полученных результатах в области генетической инженерии и биотехнологии в Узбекистане.
  - 3. Перечислите направления биотехнологии.
  - 4. Как вы представляете себе будущее генной и клеточной инженерии?
  - 5. Что такое генная терапия?
  - 6. Какими свойствами обладают клетки «основы»?
- 7. Как вы думаете, можно ли воссоздавать органы человека в пробирке?
- III. Определите правильные ответы в тестовых заданиях.
  - 1. В каком год}' и к е м были созданы клетки «основы»?
    - А) 1 9 9 8, Томсоном; В) 1998, Чеком;
    - С) 1 9 7 7, Рослином; D) 1 9 7 7, Гордоном; E) 2000, Файлдом.
  - 2. Для каких тканей приемлема технология создания «новых» органов?
    - А) легкие, печень, хрящи;
    - В) сердце, кожа, сухожилия;
    - С) мочевой пузырь, кожа, хрящи;
    - D) нервы, кишки, почки;
    - Е) сухожилия, кожа, хрящи.
  - 3. Генная терапия это...
    - А) перестройка структуры генов;
    - В) разработка лекарств путем введения генов в бактерию;
    - С)рекомбинация генов;
    - D) транспозиция генов;
    - Е) лечение различных наследственных заболеваний с помощью генов.

# § 5. ДОСТИЖЕНИЯ ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ И БИОТЕХНОЛОГИИ В УЗБЕКИСТАНЕ. ПЕРСПЕКТИВЫ БИОТЕХНОЛОГИИ

Создание по инициативе Президента нашей республики Ислама Каримова Института генетики в составе Академии наук, утверждение постановлением правительства научной программы «Генинмар», определяющей развитие генной инженерии, организация Госкомитетом по науке и технике совместно с Академией наук центра генной инженерии «Генинмар» обеспечили возможности для создания биотехнологий, основанных на генетической инженерии.

Сотрудником данного научного центра И. Абдурахмановым совместно с биотехнологическим центром Техасского университета сельского хозяйства и механики США (Texas A and M) выделено семейство генов, определяющих длину хлопкового волокна и регулирующих цветение хлопчатника. Это позволило заложить

основу биотехнологии, направленной на улучшение качества хлопкового волокна. Учеными лаборатории, руководимой профессором щ. С. Азимовой, успешно завершен научный проект по созданию с применением методов генной и клеточной инженерии диагностикума для диагностики опасного заболевания печени — гепатита В, известного в народе под названием желтухи, и вакцины, предупреждающей эту болезнь.

Научная группа под руководством доктора биологических наук Р. С. Мухамедова и ведущего научного сотрудника Б. Ирисбаева с применением технологий PCR широко внедрила в практику биотехнологию геннойнженерной диагностики десятков опасных наследственных заболеваний.

В сотрудничестве с Республиканским кардиологическим центром изучаются закономерности наследования заболевания кардиомиопатии (Б. Ирисбаев, Г: Хамидуллаева).

Ученые Института судебно-медицинской экспертизы при Министерстве юстиции совместно с центром «Генинмар» внедрили и усовершенствовали метод генной дактилоскопии (генная дактилоскопия — определение неизвестного лица по ДНК-последовательности гена и спектру генов) (Р. С. Мухамедов и А. Икрамов).

Профессор О. Т. Адылова выделила группу генов, обезвреживающих пестицидные остатки в пбчйе и подземных водах, из штамма бактерии Pseudomonas и пересадила их в бактерию ризосферу, обитающую на поверхности волокон сосудов хлопчатника. Итогом этих экспериментов должно стать освобождение площадей, засеваемых хлопчатником, оf остатков гербицидов и пестицидов, которыми обрабатывался хлопчатник в течение десятков лет.

Как следует из изложенного, центром «Генинмар» создан и внедрен в жизнь целый ряд генноинженерных биотехнологий в областях экологии, сельского хозяйства, юстиции и здравоохранения нашей страны. В Институте генетики Академии наук открыт Центр геномных технологий, оборудованный новейшими научными приборами, благодаря чему созданы ценные формы трансгенного хлопчатника, семена которых интенсивно размножаются (А.Абдукаримов, И. Абдурахмонов, 3. Буриев).

# Понятие биотехнологии. Достижения и перспективы биотехнологии

Любая технология, созданная при участии биологических макромолекул и организмов с Использованием знаний и закономерностей жизненных процессов, протекающих в живых существах, называется биотехнологией.

Возникновение биотехнологии своими корнями уходит в давние

времена, когда люди на основе биологических процессов бессознательно использовали технологию приготовления простокваши из молока, браги из фруктовых соков. Кроме того, в основе разведения племенных животных или создания качественных сортов растений также лежит успешное регулирование человеком жизненных процессов. Такие биологические технологии являются несколько упрощенными проявлениями биотехнологии и называются *традишионными* биотехнологиями.

Позднее в результате развития биологических наук, в частности, биохимии, микробиологии и генетики, были заложены основы довольно сложной, весьма тонкой и эффективной современной биотехнологии. Открытие способов манипуляции (клонирование, трансформация) генетическим материалом ДНК и генами организмов обеспечило ускоренные темпы развития биотехнологии. Современная биотехнология развивается по пути получения необходимых для человека веществ из биомассы микроорганизмов путем их размножения в промышленных масштабах, а также в направлениях ферментной, генетической и клеточной инженерии.

В основе биотехнологий, разработанных в течение XX в., лежат микроорганизмы. Созданы возможности для производства различной продукции — лекарств, продовольственных продуктов и других биологически активных веществ с использованием быстро размножающихся и хорошо изученных в генетическом отношении микроорганизмов. Например, путем введения в геном бактерии гена инсулина, выделенного из поджелудочной железы человека, можно получать биологически активный гормон инсулин в чистом виде или путем введения гена гормона роста вырабатывать большие количества гормона соматотропина, культивируя его бактерии в искусственных условиях. Ныне многие биотехнологические компании мира производят этим методом различные лекарства.

Прогресс молекулярной биологии к концу XX — началу XXI в. обусловил быстрые темпы развития генной и клеточной инженерии. Самые большие успехи этого периода были достигнуты, с одной стороны, благодаря выяснению полной последовательности генома человека и, с другой, — открытию 25 тысяч генов, регулирующих все жизненные процессы, протекающие в растениях, начиная с прорастания семян и кончая плодоношением. Создаваемые в настоящее время новые технологии осуществляются не только на основе микроорганизмов, но и более сложных животных и растений. В частности, продукция, получаемая в результате введения различных ценных генов в клетки растений и животных, начинает применяться в народном хозяйстве. Например, путем внедрения в геном банана генов, синтезирующих вакцину против инфекционных болезней, ученые добились получения трансгенных растений, в плодах которых

вырабатывается готовая вакцина. При употреблении в пищу таких плодов банана у человека вырабатывается иммунитет против инфекционных заболеваний. Эта технология, несомненно, имеет большое экономическое значение. Кроме того, в результате введения геном растений генов, выделенных из бактерий, которые усваивают токсическую ртуть, в настоящее время получены трансгенные растения, усваивающие ртуть из почвы. Высаживание таких растений в местах, зараженных ртутью, позволяет очистить от нее почву.

Одним из последних достижений генетической инженерии является технология лечения различных наследственных заболеваний человека посредством введения в его клетки функциональных генов. Это называется генной терапией. Широкое изучение генома человека еще больше увеличило возможности лечения наследственных болезней с помощью генной терапии.

Большие успехи в биотехнологии достигнуты в направлении клеточной инженерии. Выделяя одну здоровую клетку из органа больного и культивируя ее в искусственной питательной среде, можно получить набор клеток, относящихся к определенной ткани, и даже восстановить этот набор клеток до целого органа. Затем этот новый орган пересаживают больному, и он выздоравливает. Это называется технологией создания «новых» органов. Данная технология, хотя и применима по отношению к коже, сухожилиям и хрящам, но не подходит для сердца, печени, почек и нервных тканей. Открытие в 1998 г. американским ученым Дж. Томсоном специальных «стволовых» клеток (англ. stem cells) намного облегчило эту трудность и открыло широкие возможности для развития технологии создания «новых» органов. «Стволовые» клетки — это клетки, которые еще не полностью сформировались, но похожи на эмбриональные и обладают способностью расти в искусственной среде до образования любой ткани. Выращивая такие клетки в среде с витамином А, можно получить даже нервные ткани. К настоящему времени полностью разработаны технологии получения тканей, присуших различным органам животных. Теперь на очереди стоит задача создания с использованием полученных тканей «новых» органов тела, схожих по функциям и форме с нормальными органами. Эта работа осуществляется бурными темпами в лабораториях мира.

#### Выводы

1. Генетическая инженерия и современная биотехнология возникли в результате развития микробиологии, генетики и биохимии. Достижения молекулярной биологии, молекулярной генетики, биологии клетки, а также вновь открытые эксперимен-

тальные методы и новое оборудование обеспечили немыслимые ! темпы развития генетической инженерии и биотехнологии.

- 2. Доказательства, свидетельствующие о том, что основу ј наследственности всех растений и животных составляет молекула! ДНК, что бактерии и фаги также подчиняются законам наследст- | венности, что мутационный процесс является общим для всех живых 1 существ и может регулироваться экспериментальными методами, I способствовали развитию у ученых стремления управлять наследст- ! венностью.
- 3. Открытие блуждающих генетических элементов, доказатель- I ство появления изменений наследственной молекулы в ответ на ; воздействие внешней среды и передача этих изменений, как и мутационных, по наследству способствовали развитию у исследова- { телей стремления менять расположение отдельных отрезков (генов) в молекуле ДНК или целенаправленно изменять наследственность путем пересадки генов.
- 4. Открытие и автоматизация определения нуклеотидной последовательности в молекуле ДНК, разделение отрезков ДНК посредством рестрикционных эндонуклеаз и высокоточных электрофоретических установок, открытие устройств, синтезирующих гены по заданной программе, позволили не только получить рекомбинантную ДНК, но и ускорили процессы производства генноинженерной продукции в промышленных масштабах.
- 5. Стыковка методов получения эмбриональных тканей из растительных клеток и тканей посредством использования искусственных питательных сред, витаминов, гормонов и микроэлементов и выращивания этих тканей до зрелого растения с достижениями генетической инженерии ускорила внедрение в жизнь биотехнологии целенаправленного получения трансгенных растений.
- 6. Создание биотехнологий получения гибридом привело к возникновению биотехнологий производства моноклональных антител. В результате объединения этой биотехнологии, основанной на клеточной инженерии, с генной инженерией появилась возможность разработки методов точной диагностики инфекционных и наследственных заболеваний, а также создания биотехнологий производства сывороточных антигенов вакцин, предупреждающих инфекционные болезни.
- 7. Развитие биотехнологии пересадки ядра, выделенного из клетки любой ткани, в яйцеклетки человека и животного создало возможности для клонирования человека и животных. Именно с помощью этой технологии путем создания различных тканей разрабатываются технологии трансплантации тканей, полученных искусственным путем, в больной орган человека.
- 8. С применением данных, полученных в результате выполнения программы генома человека, создаются биотехнологии диагностики,

- прогнозирования сроков проявления и последствий и даже коррекции помощью генной терапии всех наследственных заболеваний.
- 9. На основе данных, полученных из программ геномов растений, разрабатываются методы клонирования генов, имеющих любое хозяйственное значение, точного измерения их состояния и деятельности в растении, расширения и ускорения селекционного процесса.
- 10. В нашей стране проводятся исследования почти по всем перечисленным направлениям биотехнологии.

#### Словарь терминов

Автономные плазмиды — кольцевые молекулы ДНК, не присоединяющиеся к основной хромосоме и способные к репликации автономно о т нее.

Агробактериум (от *лат*. Agrobacterium) — почвенная бактерия, образующая опухоль при заражении растений.

Антиген (от *англ*. anti — против) — чужая для организма молекула, образующая антитела при внедрении в клетку.

Антитело — белковые молекулы, нейтрализующие антиген.

Бактериофаги — вирусы, паразитирующие на бактериях и подвергающие их лизису.

Биотехнология — технология производства продукции с использованием биологических макромолекул и организмов.

Векторная конструкция — молекула ДНК плазмиды, вируса или блуждающего генетического элемента, в которую введен имеющий то или иное значение отрезок ЛНК.

Ген — отрезок ДНК, ответственный за синтез полипептидной цепи.

Геном — совокупность генов организма.

Гибридома — набор быстро делящихся гибридных клеток, образованных в результате соединения лимфоцитарной и любой другой клетки с раковой клеткой.

Инсерция (от aнгл. insertion — вводить) — внедрение отрезка ДНК в определенные места генома.

Каллусная ткань — набор неспециализированных клеток, образованн ы х при делении клетки.

Клон — колония генетически схожих клеток, образованных из одной клетки.

Лигаза — фермент, связывающий друг с другом концы молекулы ДНК.

Лизис — уничтожение бактериальных клеток бактериофагами.

Лизогения — способность бактериофага укладываться в состоянии профага в геном бактерии.

Лизогенная бактерия — бактерия, содержащая в составе генома неактивный профаг.

Молекулярная генетика — раздел генетики, изучающий молекулярные основы наследственности организмов.

Моноклональные антитела — белковые молекулы гомогенного антитела, производимые гибридомами.

Плазмид — кольцевая молекула ДНК, расположенная вне хромосомы и способная к самостоятельной репликации.

Поликлональные антитела — белковые молекулы гетерогенного антитела, выработанного против попавшего в организм чужеродного вещества.

Пронуклеус — ядра сперматозоида и яйцеклетки в оплодотворенной яйцеклетке, еще не успевшие соединиться.

Протопласт — растительная клетка, оболочка которой удалена специальными методами.

Рекомбинантная ДНК — генетическая конструкция, полученная путем і сшивания различных отрезков молекулы ДНК.

Рестриктаза (от *англ.* restriction — резать) — фермент, разрезающий 'молекулу ДНК на отрезки по специфической последовательности • нуклеотидов.

Ретротранспозон — вирусоподобная молекула ДНК, переходящая в другое место генома после синтеза своей копии с помощью матрицы i-PHK.

Сайт (от *англ*. site — место) — единственная точка в молекуле ДНК. В : зависимости от протекающего процесса она называется рестрикционным сайтом, рекомбинационным сайтом, транспозиционным сайтом.

Ті-плазмида — плазмида в клетке агробактерии, вызывающая опухо- ? левое заболевание у растений.

ТДНК — отрезок ДНК в составе Ті-плазмиды Агробактериума, ; образующий опухоль.

Транскрипция обратная — синтез двуцепочечной молекулы ДНК из і одноцепочечной молекулы РНК.

Трансгенное растение (от *англ.* trans — перенос) — растение с новым свойством, полученное в искусственных условиях путем введения в его .- клетку чужеродного гена.

Трансдукция — выведение профагом того или иного гена из генома бактерии в период индукции.

Трансмиссибельная плазмида — плазмида, способная рекомбини? роваться в составе клеточных хромосом.

Транспозоны — генетические структуры, которые вырезаются из генома ј и перемещаются в другое место генома. •:

Транспозаза — фермент, обеспечивающий перемещение транспозонов. ј

Трансформация — переход отрезка ДНК одной клетки в геном другой клетки в функционально активном состоянии.

Фаг — сокращенное название бактериофага, вид вируса.

Штамм — тип клеток одного вида, отличающихся только отдельными генами.

Эксцизия (от *англ*. excision — выход) — процесс выхода профага из генома бактерии.

Электрофорез — метод разделения молекул в специальном геле, помещенном в электрическое поле установки, по величине их отрезков.

Эндонуклеаза — фермент, разрезающий цепь ДНК (рестриктаза).

#### Глава II

#### ЭВОЛЮЦИОННОЕ УЧЕНИЕ

В настоящей главе приводятся данные об истории изучения природы, ее устройства, происходящих в ней явлениях, учение Дарвина о происхождении и многообразии культурных растений и домашних животных, изменчивости и наследственности, искусственном отборе, борьбе за существование, естественном отборе, происхождении видов, приспособлениях организмов, их возникновении, а также сведения о достижениях современной биологической науки в области эволюции органического мира, т. е. основах микроэволюции — элементарном эволюционном материале, элементарной единице эволюции, свойствах, факторах эволюции, формах естественного отбора.

Вы должны не только усвоить эти знания, но и овладеть навыками использования их на практике.

#### Задания

- I. Прочитайте текст § 6.
- П. Заполните таблицы.

Таблица 2

#### Представления естествонспытателей древнего мира о природе

| Древний Египет | Древняя Индия | Древний Китай |
|----------------|---------------|---------------|
|                |               |               |

Таблица 3

# Взгляды ученых древнего мира на устройство природы и природные явления

| Греческие учени | ae .                                                | Римские ученые                                         |
|-----------------|-----------------------------------------------------|--------------------------------------------------------|
| Эмпедокл        | Аристотель                                          | Лукреций Кар                                           |
|                 |                                                     |                                                        |
|                 | , <del>-                                     </del> | Греческие ученые           Эмпедокл         Аристотель |

# Взгляды средневековых ученых Центральной Азии на устройство природы и природные явления

| Фарабн | Беруни | Ибн Сина | Бабур |
|--------|--------|----------|-------|
|        |        |          |       |

Основываясь на данных табл. 2—4, расскажите учителю и л и однокурсникам о взглядах ученых на природу, ее устройство, происходящие в ней явления.

#### III. Определите правильные ответы в тестовых заданиях.

- 1. Ученый, который разделял животных на группы «с кровью» и «без крови»,  $-\dots$ 
  - А) Гераклит; В) Эмпедокл; С) Кротонский; D) Аристотель;
  - Е) Лукреций Кар.
- 2. Ученые, которые выдвигали положение о том, что м е ж д у организмами идет борьба за существование и естественный отбор, ...
  - А) Эмпедокл, Абу Али ибн Сина;
  - В) Аристотель, Абу Наср Фараби;
  - С) Абу Наср Фараби, Абу Райхан Беруни;
  - Д) Лукреций Кар, Гераклит;
  - Е) Гераклит, Абу Райхан Беруни.

#### § 6. ВОЗНИКНОВЕНИЕ ЭВОЛЮЦИОННЫХ ПРЕДСТАВЛЕНИЙ

Страны Древнего Востока. Представления об устройстве природы, происходящих в ней явлениях возникли в странах Древнего Востока — Египте, Китае, Индии — за несколько тысячелетий до нашей эры. В частности, в Древнем Египте были известны многие виды животных и растений, выращивались зерновые, овощные культуры, фруктовые деревья, разводился крупный рогатый скот, лошади, овцы, козы, ослы, свиньи. Были одомашнены одногорбый верблюд, газель, кошка, гусь, утка, голубь, отдельные виды лебеля.

В Древней Индии считали, что природа состоит из огня, земли, воды, воздуха и эфира, из сочетания которых возникают живые организмы, растения и животные. Они полагали, что слизистое вещество, смешиваясь с желчью, образует кровь, мышцы, жир, кости, мозг. Как отмечается в пособиях по природе, созданных в VI—I вв. до н. э., живые организмы обладают наследственными признаками, обеспечивающими сходство детей с родителями. Ребенок появляется в результате слияния продуктов половых органов мужчины и женщины.

В трудах, написанных в Китае в IX—VII вв. до н. э., отмечается, что все в природе — вода, огонь, земля, металлы — возникло из противоположных материальных частиц, они, в свою очередь, послужили основой для возникновения растений, животных и человека. Жители Древнего Китая еще за два тысячелетия до нашей эры занимались земледелием и скотоводством. Именно поэтому Китай считается родиной многих видов культурных растений и домашних животных.

Представления о неживой и живой природе, возникшие в странах Востока в древности, впоследствии оказали влияние на науку Древней Греции и Рима.

Древняя Греция и Рим. По представлениям греческих ученых, живших до V в. до н. э., мир появился из воды, огня и воздуха, а первые животные произошли из воды. Их тело было покрыто чешуй-ками, которые исчезли с переходом животных на сушу. Гераклит указывал, что природа постоянно обновляется.

По мнению греческого ученого Эмпедокла (490—430 гг. до н.э.), вся неживая и живая природа произошла из противоположностей — огня и воды, воздуха и земли. Сначала по отдельности возникали органы и части животных, потом они, соединяясь друг с другом, образовали организмы. Соединение соответствующих друг другу органов приводило к развитию нормальных, а соединение несоответствующих — к развитию ненормальных организмов. Первые, размножаясь, оставляли потомство, а последние погибали.

В развитие естествознания Древней Греции большой вклал внес Аристотель (384—322 гг. до н.э.). Он создал основу классификации животных, впервые затронул вопросы сравнительной анатомии и эмбриологии. Его перу принадлежат такие труды, как «О возникновении животных», «О частях животных» и др. В них он выдвигал некоторые идеи о постепенном развитии природы. Аристотелю было известно около 500 видов животных. Он указывал на необходимость при классификации животных обращать внимание не на отдельные, а на множество признаков. Всех животных он разделял на две большие группы — животные «с кровью» и «без крови», которые соответствуют современным позвоночным и беспозвоночным. Животные «с кровью» были разделены на пять больших родов. Понятие «большой род» может быть отождествлено с современным понятием «класс». Аристотель различал 130 видов «бескровных». Как он подчеркивает, медузы, актинии и губки по своей организации близки, с одной стороны, к животным, а с другой — к растениям. Поэтому Аристотель называл их зоофитами. Как указывается в труде «О возникновении животных», развитие эмбриона происходит в определенной последовательности. Зародыш

сначала имеет структуру, свойственную зоофитам, но постепенно приобретает общие черты животных, строение, свойственное своему виду, и, наконец, черты, присущие данному индивиду. По мнению ученого, внутренности всех животных «с кровью» похожи друг на друга и расположены одинаково.

Один из учеников Аристотеля, Теофраст, изучил более 400 видов растений и описал их строение, физиологию и практическое значение. Он поддерживал мысль о возможности превращения растений одного вида в другой.

Римский ученый Лукреций Кар (99—55 гг. до н.э.) утверждал, что мир возник сам собой, животные также произошли из земли, причем сначала возникли нежизнеспособные виды, впоследствии — научившиеся двигаться, питаться, размножаться, защищаться от врага нормальные животные.

Клавдий Гален (130—200 гг.) был одним из основоположников медицины. Он изучил строение овцы, собаки, медведя и других позвоночных животных, отметил сходство строения тела обезьяны и человека. Однако его положения в области физиологии не лишены некоторых ошибок. Например, по его мнению, воздух поступает в сердце, кровь переходит из одного желудочка в другой через отверстия в стенке, расположенной между ними.

**Центральная Азия.** Из глубокой древности до нас дошли священные книги, в которых приводятся сведения о земледелии, скотоводстве, медицине и других областях жизни народов Центральной Азии, рассказывается также о природных явлениях. Одна из них — «Авеста», написанная 2700 лет тому назад, содержит сведения о природных ресурсах, растительном и животном мире, природе, жизни народов Центральной Азии и соседних стран.

Происхождение мира, природа и природные явления, образ жизни людей изображены в «Авесте» как противоборство двух противоположных сил — Ахура Мазды и Анхра Ману. Создатель вселенной и жизни Ахура Мазда сотворил все хорошее и прекрасное, а Анхра Ману — все нехорошее и безобразное, например, волков, драконов, насекомых-вредителей, скорпионов, лягушек, комаров, муравьев. Собака рассматривается как символ преданности и пользы, а волк — как символ жестокости.

В разделе «Авесты», относящемся к медицине, подчеркивается, что необходимо соблюдать чистоту воды, не допускать загрязнения колодцев и родников, соблюдать чистоту и опрятность, ухаживать за ногтями и волосами.

Земля считалась священной, поэтому запрещалось хоронить умерших в землю. Их оставляли на съедение червям и диким животным. Основной причиной этого являлась, с одной стороны.







Рис. 17. Абу Райхан Беруни.

необходимость соблюдения чистоты почвы, с другой, — то, что зороастрийцы истолковывали смерть как враждебную силу.

В то время как в Европе в средние века естественные науки подвергались гонению, в Центральной Азии продолжалось их бурное развитие. Центральноазиатские ученые внесли большой вклад в развитие естествознания, особенно биологических наук.

Именно поэтому великие ученые Центральной Азии, жившие и творившие в IX—XV вв., считаются достойными предшественниками великих европейских ученых XVI—XVIII вв. Так, Ахмадом ибн Насром Джайхони (870—912 гг.) были собраны ценные сведения о растительном и животном мире Индии, Центральной Азии и Китая. Он оставил данные о распространении растений и животных, об их значении в природе и их видах, которые используются местным населением.

Абу Наср Фараби (873—950 гг.) (рис. 16) высказал ряд соображений, касающихся ботаники, зоологии, анатомии человека и других областей естествознания. Он указывал на то, что организм человека является целостной системой и что возникновение различных болезней связано с изменением режима питания. Фараби утверждал, что человек произошел от животных, поэтому у него сохранилось некоторое сходство с ними. Он признавал существование естественного и искусственного отбора.

В развитие естествознания в средние века большой вклад внесли Абу Райхан Беруни и Абу Али ибн Сина. Беруни (973—1048 гг.) родился и учился в Хорезме. Он знал арабский, греческий, сирийский, древнеиндийский (санскрит) языки, написал более 150 трудов по различным отраслям науки. Беруни (рис. 17) указывал, что природа возникла из пяти элементов: пространства, воздуха, огня, волы и почвы.

Беруни критически относился к учению древнегреческого ученого Птолемея о том, что Земля является центром Вселенной и неподвижной планетой. Он считал, что Земля имеет круглую форму и нет ничего удивительного в том, что она вращается вокруг Солнца. Следовательно, Беруни еще за 500 лет до польского астронома Коперника имел правильное представление об основах строения Солнечной системы. По его мнению, земная поверхность постоянно подвергается изменениям: в безводных местах постепенно возникают реки, моря, которые, в свою очередь, также меняют свое расположение. По утверждению Беруни, условия для развития животных и растений ограничены, поэтому между живыми существами идет борьба за существование, которая составляет сущность их жизни.

Беруни считал, что если бы природа не ограничивала размножение какого-нибудь вида, он занял бы все пространство на земле. Однако такому размножению препятствуют другие организмы, и борьба между ними приводит к возникновению более приспособленных организмов. На основе положений, высказанных Беруни, о борьбе за существование, естественном отборе, мы убеждаемся в том, что наш соотечественник констатировал наличие движущих факторов эволюции на 800 лет раньше, чем английский естествоиспытатель Чарльз Дарвин.

По мнению Беруни, все в природе живет и развивается в соответствии с законами природы. Хотя он не признавал исторического развития живой природы, но допускал, что пчелы произошли от растений, черви от мяса, скорпионы от инжира. Согласно



Рис. 18. Абу Али иби Сина.

предположению ученого, изменение земной поверхности влечет за собой изменение растений и животных. Беруни признавал, что различия в цвете кожи, внешнем виде, характере, поведении людей зависят не только от их наследственности, но также и от почвы, воды, воздуха и условий среды. Он отмечал, что человек в своем развитии далеко ушел от животных. Он подчеркивал, что деление людей на высшие и низшие расы является следствием невежества.

Известный ученый-естествоиспытатель Центральной Азии Абу Али ибн Сина (980—1037 гг.) верил в объективную реальность природы (рис. 18).

По его мнению, горы возникли под

воздействием воды или в результате поднятия земли. Когда-то некоторые участки земли были морским дном, поэтому в этих местах встречаются остатки водных животных, например, раковины. В своих трудах Ибн Сина отмечал наличие сходства у растений, животных и человека, так как все они питаются, размножаются и растут. Растения находятся на низшей ступени развития, животные на средней, а человек — на самой высшей. В средние века, когда запрещалось изучать строение тела человека. Ибн Сина занимался анатомией тайно. Ученый написал много научных трудов, из которых до нас дошли 242. Из них 23 труда посвящены медицине. Ученый прославился как один из основоположников медицины. Ибн Сина — автор всемирно известного научного труда «Канон медицины», являющегося энциклопедией медицинских знаний средневекового Востока. «Канон медицины» состоит из пяти книг. В первой книге описываются строение и функции тела и органов человека, различные заболевания с указанием причин их возникновения. методы их лечения. Во второй книге указываются лекарства, получаемые из растений, минералов и животных, и заболевания, которые излечиваются каждым из них. Третья книга посвящена заболеваниям каждого органа человека, способам их выявления и лечения. В четвертой книге речь идет о хирургии, то есть лечении вывихов и переломов костей. В пятой книге приводятся сведения о сложных лекарствах и способах их приготовления. «Канон медицины» Ибн Сины на протяжении 500 лет изучался в университетах Европы в качестве основного медицинского руководства и издавался более 40 раз. Ученый считал, что причиной некоторых болезней человека (оспа, холера, туберкулез) являются невидимые организмы. Следовательно, Ибн Сина предполагал распространение инфекционных заболеваний через воду и воздух еще задолго до открытия микроскопа и на 600—700 лет раньше становления микробиологии как науки.

Захириддин Мухаммад Бабур (1483—1530 гг.) был не только великим государственным деятелем и поэтом, но и крупным ученым-естествоиспытателем. В его книге «Бабурнаме» наряду с интересными сведениями об истории, географии, образе жизни и культуре народов Центральной Азии, Афганистана и Индии, описываются их растительный и животный мир. Приводя данные о сходствах и различиях растений и животных, их строении и образе жизни, Бабур основывался не на литературных сведениях и не на рассказах людей, а на том, что наблюдал сам. В частности, он указывал, что на пастбищах Самарканда и Бухары в изобилии растут арча, кустарники, кипарисы, оливы, платаны, что многие животные этих мест схожи с животными Индии. Бабур описал внешний вид и образ жизни попугаев, кур, аистов, слонов, обезьян, дельфинов, крокодилов, оленей и других животных. Он разделил животный мир

на четыре группы: животные, обитающие на суше; птицы; животные, живущие около воды; водные животные.

Таким образом, представления и знания о природе, об изменениях, происходящих в ней, о строении растений и животных накапливались постепенно на протяжении 3000—4000 лет. Большую роль в этом сыграли средневековые ученые Центральной Азии.

#### Задания

- I. Прочитайтетекст § 7.
- II. Заполните таблицы.

Таблица 5

#### Открытия, сделанные в естественных науках до Дарвина

| Науки         | Открытия |
|---------------|----------|
| Анатомия      |          |
| Эмбриология   |          |
| Палеонтология |          |
| Цитология     |          |

Таблица 6

#### Описание систем животных Карлом Линнеем, Жоржем Кювье, Жан Батистом Ламарком

| Карл Линней | Жорж Кювье | Жан Батист Ламарк |
|-------------|------------|-------------------|
|             |            |                   |

Таблица 7

#### Толкование созданных систем

| Карл Ј             | <b>Тинней</b>      | Жорж               | Кювье              | Жан Батист         | Ламарк             |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| положи-<br>тельная | отрица-<br>тельная | положи-<br>тельная | отрица-<br>тельная | положи-<br>тельная | отрица-<br>тельная |
|                    |                    |                    |                    |                    |                    |

- III. Укажите на карте, г д е побывал и что видел Чарльз Дарвин во время кругосветного путешествия на корабле «Бигль».
- IV. Существует ли, по вашему мнению, связь м е ж д у общественноэкономическими условиями Англиив XIXв. и учением Дарвина? Если да, обоснуйте с в о й ответ.

#### § 7. ЕСТЕСТВЕННОНАУЧНЫЕ И ОБЩЕСТВЕННО-ЭКОНОМИЧЕСКИЕ ОСНОВЫ ЭВОЛЮЦИОННОГО УЧЕНИЯ

#### Развитие систематики и других естественных наук

В середине XV в. в европейских странах на смену феодализму пришла власть буржуазии. В результате этого стали возникать промышленные центры, крупные города, некоторое развитие получили наука и техника. Стало возможным путешествовать на далекие расстояния. Начались завоевание чужих стран, ограбление их природных богатств, эксплуатация народов. В больших городах создавались ботанические сады и зоопарки. Из других стран в Европу были завезены многие виды растений и животных, не

известных европейцам. Все это возбудило большой интерес к их изучению.

В результате этого знания людей в этой области стали гораздо обширней, чем в античный период. Для дальнейшего развития ботаники и зоологии требовалось сначала классифицировать уже известные виды растений и животных. Этим занимался известный шведский ученый Карл Линней (1707—1778 гг.) (рис. 19). Самоотверженный ученый описал свыше 10 тыс. видов растений и более 4200 видов животных. Он объединил виды в роды, роды в семейства, семейства в отряды, а отряды в классы. В курсах ботаники и зоологии вы познакомились со многимитипами, классами,



Рис. 19. Карл Липней

отрядами, семействами, родами и видами водорослей, споровых. голо- и покрытосеменных растений, беспозвоночных и позвоночных животных. В настоящее время получили широкое развитие разные этрасли биологии. Поэтому при систематизации растений и животных принимается во внимание множество их признаков я • действ. Такой подход, в свою очередь, позволяет систематизировать живые существа на основе их родственных отношений

Во времена Линнея многие отрасти биодогии быти еще не развиты, ПОЭГОМУ е м у удалось создать лишь 'искусственную систему, которая была основана на отдельных признаках растений и животных. Он объединил все растения по числу пыльников и длине тычиночных нитей в 14- класса, а животных по строению в 6 классов. В результате этого близкие по происхождению А родственном свяччм организмы ^ыпи объединены в разные классы м наоборот организмы различные по происхождению и родственным связям. - з один класс. К ЛИР чей считал, '^то виды растений и животных не изменяются Хотя созданная им система и была искусственной, но впоследствии его деятельность послужила толчком для веестопон-

него изучения органического мира. После трудов Линнея ботаника и зоология стали развиваться быстрыми темпами.

В развитие биологической науки большой вклад внес французский ученый Жорж Кювье (1769—1832 гг.). Он проводил исследования в области морфологии, анатомии, систематики, палеонтологии. Кювье утверждал, что основная задача морфологии состоит не в простом описании строения организма животных, а в раскрытии его закономерностей. По его мнению, каждое живое существо является целостной системой, и его органы неразрывно связаны между собой. В соответствии с этим изменение одного, например, органа пищеварения животного, приводит к изменению других связанных с ним органов. Хотя ученый и признавал на словах взаимосвязь изменений органов животного, но на практике он отрицал это. Согласно выдвинутому Кювье положению, каждый вид животных возникает в определенной среде, в которой он обитает, поэтому у животных не происходит никаких изменений. При систематике животных Кювье использовал открытый им принцип корреляции органов. В отличие от Линнея, он считал, что при систематизации животных основное внимание необходимо обращать на строение нервной системы, обеспечивающей связь с внешней средой. По строению нервной системы ученый разделил всех животных на четыре типа: позвоночные, моллюски, членистые, лучевые. По утверждению Кювье, эти типы животных постоянны и неизменны.

В XVIII—XIX вв. определенные исследования проводились также в области изучения индивидуального развития животных и растений. В 1827 г. Карл Бер впервые открыл яйцеклетку у млекопитающих. При тшательном изучении развития цыпленка он установил, что его органы развиваются постепенно. Бер установил сходство животных, относящихся к различным классам, на начальных этапах эмбрионального развития. В конце XVIII — начале XIX в. сформировалась палеонтология — наука об ископаемых животных и растениях. В развитии этой науки велика заслуга Жоржа Кювье, который изучил более 150 видов ископаемых млекопитающих и пресмыкающихся. С помощью принципа корреляции органов Кювье разработал и применил на практике метол восстановления вида пелого животного по отдельным костям ископаемых животных. Он установил, что в разные эры и периоды Земли проживали самые разнообразные виды животного мира. Хотя ученый утверждал, что со временем они усложнялись, но объяснял эти изменения с точки зрения теории катастроф.

К 40-м годам XIX в. была создана клеточная теория. Ее авторами являются немецкие ученые Т. Шванн и М. Шлейден. Она считается одним из величайших открытий естествознания XIX в. Согласно этой теории, все живые существа, растения, животные, тело человека состоят из клеток. Клеточная теория послужила основой для предположения о единстве строения всех организмов.

#### Учение Ламарка

Учение об эволюции органического мира впервые было создано французским естествоиспытателем Жаном Батистом Ламарком (1744—1829 гг.) (рис. 20). Он проводил научные исследования сначала в области ботаники, впоследствии — зоологии. Впервые идею об эволюции Ламарк выдвинул в своем труде «Введение в зоологию», но преобразовал эту идею в эволюционную теорию в труде «Философия зоологии», изданном в 1809 г.



Рис. 20. Жан Батист Ламарк.

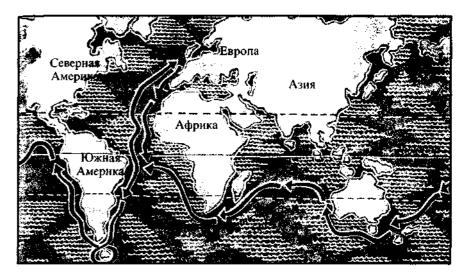
По мнению Ламарка, простейшие существа самопроизвольно зарождаются из неорганической природы. Впоследствии, изменяясь под

воздействием внешней среды и со временем усложняясь, они превращаются в высшие организмы. Следовательно, время имеет большое значение как фактор эволюции организмов. Отвечая на вопрос, почему же в настоящее время вместе с животными, имеющими сложное строение, встречаются простейшие существа. Ламарк объяснял, что они произошли из неживой природы недавно и поэтому еще не успели приобрести сложное строение. Ламарк занимался также систематикой животных. Он разделил всех животных на 14 классов. Из них 4 класса относятся к позвоночным. 10 классов — к беспозвоночным. В зависимости от строения органов пищеварения, кровообращения, дыхания и нервной системы Ламарк подразделил животных на 6 ступеней. Переходя от низшей ступени к высшей, эти системы органов постепенно усложняются. Следовательно, в отличие от К. Линнея, Ламарк попытался создать естественную систему. Самая важная заслуга Ламарка состоит в том. что его эволюционная идея была подтверждена множеством доказательств. По утверждению ученого, изменение организмов и возникновение их новых видов происходят, с одной стороны, благодаря их стремлению к совершенствованию и, с другой, вследствие непосредственного влияния внешних факторов.

По мнению Ламарка, растения и низшие животные со слабо развитой нервной системой изменяются прямо под воздействием внешней среды. Животные же, имеющие сложное строение нервной системы, изменяются опосредованно, в результате изменения их потребностей, повадок и привычек, упражнения или неупражнения органов.

Признавая постепенность изменений в природе, Ламарк отрицал реальность видов. Хотя он и заложил основу учения об эволюции органического мира, однако не смог объяснить ее движущие силы — борьбу за существование, естественный отбор.

Таким образом, данные, собранные в первой половине XIX в. в различных отраслях естествознания, показали, что органический мир не находится в застывшем состоянии, а постоянно изменяется. Однако единая теория об эволюции органического мира еще не была создана. Хотя и признавалась изменчивость органического мира, вопрос о причине приспособленности каждого вида организмов к условиям своей среды обитания еще не нашел решения. Основная задача естествознания состояла в разработке единой теории об эволюции органического мира на основе накопления и обобщения данных, собранных в различных его отраслях. Это позволило бы положить конец ошибочным взглядам, которые в течение многих веков господствовали в естествознании, и направить дальнейшее развитие биологии по научно обоснованному пути. Для решения этой огромной задачи нужна была незаурядная личность с обширными знаниями.


Именно такой личностью был Чарльз Дарвин.

#### Общественно-экономическое положение Англии в XIX в.

К XIX в. Англия являлась крупной страной с развитой промышленностью и сельским хозяйством, установившей господство над многими странами. Развитие промышленности привело к тому, что часть сельского населения перебралась в города. Бурное развитие промышленности потребовало дальнейшего увеличения сырья, получаемого от животноводства и сельского хозяйства. Чтобы удовлетворить возросшие потребности в сельскохозяйственном сырье, английские селекционеры начали выводить высокопродуктивные породы овец, крупного рогатого скота, птицы, высокоурожайные сорта овощных и зерновых культур. Занятие селекцией приобрело массовый характер. Результаты селекции положили конец господствовавшим в то время представлениям о неизменности животных и растительных организмов.

С целью поиска все новых и новых источников сырья для промышленности английское правительство организовывало экспедиции в другие страны. В одной из таких экспедиций в качестве натуралиста участвовал и Чарльз Дарвин (рис. 21).

Биография Ч. Дарвина и путешествие на корабле «Бигль». Чарльз Дарвин (рис. 22) родился 12 февраля 1809 г. в английском городе Шрюсбери в семье врача. По окончании школы он поступил на медицинский факультет Эдинбургского университета. Однако преподавание многих предметов на латинском языке и оперирование больных без наркоза отвратили его от медицины. По этой причине он оставил университет и по совету отца поступил на богословский факультет Кембриджского университета. Здесь Дарвин, не особенно увлекаясь религиозными догмами, начал изучать естественные науки



Рис, 21. Маршрут корабля «Бигль».

под руководством профессоров Д. Гукера и А. Седжвика и активно участвовал в организуемых ими экспедициях.

В 1 8 3 1 г. он окончил университет, однако не стал священником. Профессор Генсло, зная об увлечении молодого Дарвина естественными науками и о его способностях вести наблюдения за природой, дал ему рекомендацию для работы натуралистом на корабле «Бигль», который отправлялся в кругосветное плавание. На этом корабле Дарвин в течение пяти лет плавал по Атлантическому, Тихому и Индийскому океанам и побывал на многих островах, на восточном и западном побережьях Южной Америки, в Австралии, в южных районах Африки. Он познакомился с распространенными там растениями и

животными. Изучив останки ископаемых и ныне существующих животных и сравнив их, он определил сходства и различия между ними. Сравнивая животных Северной и Южной Америки, Дарвин отметил, что обитающие в Южной Америке лама, тапир, ленивец, муравьед, броненосец не встречаются в Северной Америке. Дарвин утверждал, что эти два континента в древности составляли единое целое, а затем были разделены горными хребтами. В результате этого животный и растительный мир Северной и Южной Америки стал различаться. Особенно поразил Дарвина животный и растительный мир Галапагос-



Рис. 22. Чарльз Дарвин.



Рис. 23. Различия в клювах горных вьюрков Галапагоса.

ского архипелага, расположенного на расстоянии 900 км от западного берега Южной Америки. Часто встречающиеся там вьюрки из отряда воробьиных и черепахи на каждом острове отличаются своеобразным строе: нием. Животный и растительный мир Галапагосского архипелага в общих чертах сходен с таковым Южной Америки, однако все же

отмечаются различия по отдельным признакам и свойствам (рис. 23).

Из кругосветного путешествия Дарвин вернулся с очень богатой коллекцией животных и гербариями. Собранные во время путешествия доказательства послужили основой для создания Дарвином учения об эволюции органического мира.

#### Задания

- I. Прочитайте текст § 8.
- II. Внимательно изучите табл. 8-10.
- III. Обратите внимание на рис. 24—26.
- IV. Ответьте на вопросы.
  - 1. Какие сходства и различия существуют между сознательным и бессознательным отбором?
  - 2. От чего зависит успешность искусственного отбора?
  - 3. Какие цели преследует человек, проводя искусственный отбор?
  - 4. Какие признаки хлопчатника изменены путем искусственного отбора?
  - 5. Расскажите о подробностях опытов русского ученого Д. К. Беляева.
- V. Определите правильные ответы в тестовых заданиях.
  - 1. Крупные произведения Дарвина ...
    - А) «Происхождение видов», «Дарвин и его учение», «Происхождение человека и половой отбор»;
    - В) «Происхождение видов», «Дарвин и его учение», «Прогресс в растительном и животном мире»;
    - С) «Происхождение видов», «Происхождение человека и половой отбор», «Изменчивость домашних животных и культурных растений»;
    - D) «Дарвин и его учение», «Философия зоологии», «Канон медицины»;
    - E) «Дарвин и его учение», «Происхождение видов», «Влияние перекрестного и самоопыления в растительном мире».
  - 2. Когда началось одомашнивание диких животных и окультуривание диких растений?
    - А) 10—12 тыс. лет назад; В) 8—10 тыс. лет назад;
    - С) 3—5 тыс. лет назад; D) 1—2 тыс. лет назад; E) до нашей эры.
  - 3. В какие годы Дарвин совершил кругосветное путеществие на корабле «Бигль»?

- A) 1830-1835; B) 1828-1833;
- C) 1831—1836; D) 1835—1840; E) 1826—1831.
- 4 Определите породы и виды, произошедшие от одного дикого предка.
  - А) домашние голуби, свекла, овца;
  - В) калуста, голубь, крупный рогатый скот, евинья;
  - С) овца, крупный рогатый скот, собака, курица;
  - D) курица, голубь, капуста, свекла;
  - Е) свинья, собака, овца, крупный рогатый скот.

#### § 8. СУЩНОСТЬ УЧЕНИЯ ДАРВИНА

Вернувшись из кругосветного путешествия, Дарвин начал изучать собранный материал совместно с известными учеными-естествоиспытателями Англии. Одновременно с этим он исследовал опыт выведения новых пород животных и сортов растений, а также знакомился с трудами своих предшественников и современников. На основании этого в 1842 г. он впервые написал научный труд об эволюции органического мира, который в течение последующих 15 лет расширял, углублял и обогащал достоверными фактами.

Наконец, в 1859 г. он опубликовал свой знаменитый труд «Происхождение видов». Дарвин написал еще ряд произведений, среди которых следует указать «Изменчивость домашних животных и культурных растений» (1868), «Происхождение человека и половой отбор» (1871), «Влияние перекрестного и самоопыления в растительном мире» (1876). В них ученый привел огромный фактический материал об эволюции органического мира, изложил результаты исследований, взгляды и соображения своих предшественников и современников в этой области. Дарвин подчеркивал, что движущими силами эволюции органического мира являются наследственность, изменчивость, борьба за существование и естественный отбор. Чарльз Дарвин умер в 1882 г.

#### Искусственный отбор

Из кругосветного путешествия Дарвин вернулся с уверенностью в том, что виды могут изменяться под влиянием внешней среды.

О непостоянстве, изменчивости видов свидетельствовали и научные факты геологии, палеонтологии, сравнительной анатомии, эмбриологии. Несмотря на это многие ученые-естествоиспытатели под влиянием господствовавших в те времена представлений, ссылаясь на то, что не наблюдали превращения одного вида в другой, не признавали эволюцию органического мира. Поэтому молодой Дарвин начал свою деятельность с определения механизмов эволюционного процесса. Он прежде всего изучил причины многообразия домашних животных и сортов культурных растений.

#### Бессознательный отбор

Как доказывают археологические данные, до появления людей современного типа на Земле не существовали формы культурных растенш; и домашних животных. Первобытные люди занимались охотой и диких животных, сбором семян, плодов и других частей дикорастущих растений. Примерно 9—10 тысяч лет тому назад люди стали приручать детенышей диких животных, выращивать вокруг своих жилищ некоторые виды диких растений, и этот опыт передавался из поколения в поколение. Каждый раз из имеющихся растешн и животных люди отбирали для размножения отдельные продуктаные экземпляры, а остальные использовали для своих нужд. Такой отбор продолжался на протяжении многих тысячелетий. В результате этого возникали местные породы животных и сорта растений, несколько отличающиеся от диких растений и животных своими полезными признаками и свойствами. Учитывая то, что человек в своей деятельности не ставил перед собой прямой цел и создания новых сортов и пород, Дарвин назвал такой первобытный отбор бессознательным. Бессознательная форма искусственного отбора применяется и в настоящее время среди отсталых племен и в земледельческих хозяйствах. Так, во время путешествия на корабле «Бигль» Дарвин наблюдал, как дикие племена живущие на Огненной Земле, в неблагоприятные годы поедали чало пригодных для охоты на выдр собак и кошек, сохраняя более полезных животных. В Центральной Азии в результате бессознательного отбора людьми были созданы сорта пшеницы, зерна которой не осыпаются, местные сорта бахчевых культур и плодовых деревьев. Выведение сортов растений и пород животных путем бессознательного отбора требовало очень много времени.

#### Сознательный отбор

В последующем, когда наука и техника достигли определенного уровня развития, что привело к увеличению потребностей людей в питании, одежде и лекарствах, основную роль в выведении сортов растений и пород животных начал играть сознательный отбор. При этом заэанее планировалось, какими полезными признаками и свойствами должны обладать создаваемые сорта растений и породы животных. На этой основе затем производился искусственный отбор. Э т о способствовало сокращению сроков выведения новых пород и сортов и повышению эффективности отбора (табл. 8—10).

Когда человек производит искусственный отбор, основной его целью, прежде всего, является удовлетворение своих потребностей. А потребности у человека разные: экономические, хозяйственные, эстетические. Например, одни ставили задачу выведения мясной,

другие — яйценосной, третьи — бойцовой породы кур, а четвертые хотели иметь красивых кур с длинными перьями и с годами достигали ц е л и . Проведение искусственного отбора в разных направлениях применимо ко всем организмам. Ярким примером этого является создание раннеспелых (хандаляк), летних, тонко- и толстокорых, осенних и зимних сортов дынь (рис. 24), каракульской и гиссарской пород овец, ахалтекинской и карабаирской пород лошалей.

Таблица 8 Изменение хозийствению ценных признаков хлопчатника в результате искусственного отбора

| Годы | Урожай с<br>каждого<br>гектара, ц | Масса коро-<br>бочки, г | Длина во-<br>локна, мм | Выход<br>волокна,<br>% |
|------|-----------------------------------|-------------------------|------------------------|------------------------|
| 1923 | 8,01                              | 4,8                     | 27                     | 30                     |
| 1940 | 15,0                              | 5,2                     | 32,2                   | 33,4                   |
| 1950 | 20,3                              | 5,5                     | 34,4                   | 34,4                   |
| 1960 | 20,4                              | 6,2                     | 32                     | 34,7                   |
| 1970 | 25,3                              | 6,3                     | 32,5                   | 34,8                   |
| 1980 | 29,7                              | 6,3                     | 34,7                   | 36,7                   |

Таблица 9 Изменение каличества молока у крупного рогатого скота цимментальской породы

| Годы      | Количество молока от одной коровы, л |
|-----------|--------------------------------------|
| 1870—1875 | 2500                                 |
| 1880—1885 | 2950                                 |
| 1890—1919 | 4000                                 |

| Годы | Созержание сахара, % | Годы | Содержание сахара, % |
|------|----------------------|------|----------------------|
| 1808 | 6,0                  | 1888 | 13,7                 |
| 1838 | 8.5                  | 1898 | 19.2                 |
| 1848 | 9,8                  | 1908 | 18,6                 |
| 1858 | 10,1                 | 1929 | 20,1                 |
| 1878 | 11.7                 | 1954 | 22,3                 |

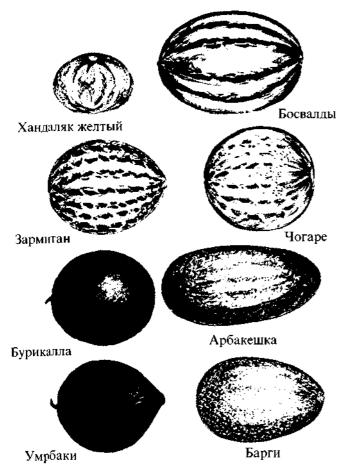



Рис. 24. Сорта дыни.

В Центральной Азии путем искусственного отбора созданы сорта низкорослой пшеницы, гороха, моркови, абрикоса, фисташки, персика, граната, инжира, винограда, ореха, яблони и разнообразные сорта других растений.

В процессе искусственного отбора человек старался улучшить полезные для него признаки и свойства растений и животных. Доказательством этого является создание мясных пород овец и свиней, сортов растений, не дающих семена, бесшерстных пород собак, не способных летать против ветра павлиньих голубей и т.д.

Некоторые сорта растений и породы животных созданы на основе одного дикого вида, а другие — на основе нескольких диких видов. Например, различные породы собак получены от шакалов и

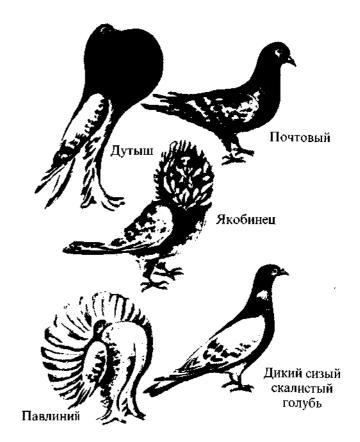
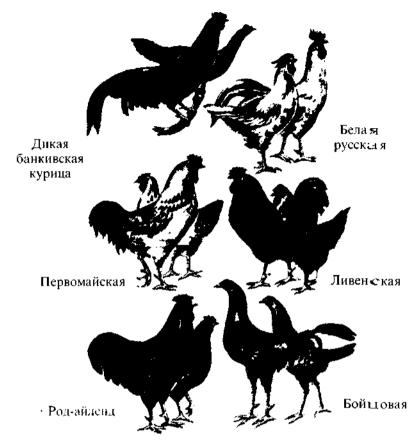




Рис. 25. Породы голубя и его дикий предок.

волков, породы овец — от ряда их диких предков — архара, муфлона и аргали, породы кур — от дикой банкивской курицы, породы голубей — от дикого сизого скалистого голубя (рис. 25), породы крупного рогатого скота — от степных и лесных диких видов крупного рогатого скота, а сорта капусты — от дикого вида капусты.

Обоснованность приведенных положений Дарвин доказал с помощью ряда аргументов. Например, дикие банкивские куры, распространенные в густых лесах Индии и Юго-Восточной Азии, не очень боятся человека, спят на деревьях и ветвях кустарников и при скрещивании с домашними курами дают нормальное потомство. Все это является доказательством того, что домашние куры произошли от диких банкивских кур (рис. 26). Именно таким путем Дарвин доказал, от каких диких видов произошли те или иные породы домашних животных и сорта культурных растений.



Р п с. 26. Породы кур и их дикий педок.

Дарвин не мог в т<; время экспериментальна доказать возможность одомашнивания. Д и к и х животных п у т е м искусственного отбора. Это впоследствии сделал русский ученьй, академик Д. К. Беляев. В ходе наблюдений за чернобурыми листами он заметил, что по отношению к человеку они ведут себя по-разному. Оказалось, что животные одной группы пыли крайне агрессдчными и бросались на чедовека. второй і р  $\setminus$  с п пы — хотели ч т о го но оялись, лисицы же третьей группы были спокойными.

Беляев огобрат и третьей группы лисиц амцов и самок и скресдил их меж; (обой. Из полученного ютомства ученый продолжал отбирать .-.'-обей. быстро привыкакних к человеку В результате искусственного отбора, проведенног среди нескольких поколений таких лисиц, были получены лохские на домашних собак, д. е. быстро привыкающие к человеку и озечающие на ласку живодные. Проведение искусственного отбора «сходя из повадок

животных привело к изменению их морфологических и физиологических признаков. Так, в результате экспериментов были получены лисицы с отвислыми ушами и загнутым кверху хвостом. Дикие лисицы обычно дают потомство раз в год, а одомашненные — дважды: в декабре-январе и марте-апреле.

Проводя искусственный отбор, человек ставит перед собой цель изменить не все признаки и свойства растений и животных, а только те, которые представляют для него интерес. Поэтому в результате искусственного отбора признаки и свойства организмов, не соответствующие потребностям человека, остаются неизменными или незначительно изменяются согласно закону корреляции. Например, хотя разные сорта хлопчатника и различаются по скороспелости, урожайности, технологическим качествам волокна, все они сходны по строению цветка и корней. У анютиных глазок, наоборот, цветки разнообразные, а листья похожи, так как при выведении этого растения учитывались эстетические потребности человека. Такое положение можно наблюдать и у животных. Шерсть тонкорунных овец высоко ценится. Поэтому у овец разных пород шерсть резко различается. Этого нельзя сказать о крупном рогатом скоте.

Дарвин обратил внимание на то, что успешное осуществление искусственного отбора зависит от:

- 1) численности организмов, взятых для отбора;
- 2) их индивидуальной изменчивости;
- 3) внимательности селекционера, проводящего отбор;
- 4) контроля за скрещиванием организмов, подвергаемых отбору;
- 5) результативности отбора.

Иначе говоря, метод искусственного отбора должен отвечать трем взаимодополняющим условиям:

- 1) отбор и сохранение организмов, пригодных для достижения поставленной цели:
- 2) исключение организмов, не соответствующих потребностям человека:
- 3) отбор родительских форм для скрещивания и получение из них нового потомства.

Следовательно, при выведении новых сортов и пород основными факторами являются наследственная изменчивость и искусственный отбор. Методы создания новых сортов и пород в последующий после Дарвина период значительно усовершенствовались. В настоящее время при этом используются методы скрещивания родительских организмов, далеких друг от друга в систематическом и экологическом отношении, получения мутантных организмов под воздействием химических и физических факторов, пересадки гена, хромосомы и ядра из одной клетки в другую, размножения отдельной клетки в искусственной среде и др.

# § 9. ЭКСКУРСИЯ В ЖИВОТНОВОДЧЕСКИЕ И ПТИЦЕВОДЧЕСКИЕ ХОЗЯЙСТВА

Тема. Искусственный отбор.

Цель. Ознакомление с породами, выведенными путем искусственного отбора, с их хозяйственными признаками.

Оборудование. Тетрадь, ручка, фотоаппарат.

#### Примерный план

- 1. Ознакомление с породами крупного рогатого скота, овец или птицы, выращиваемых в общественных и фермерских хозяйствах.
- 2. Определение пород, выведенных в местных условиях и завезенных из других стран.
- 3. Выявление среди них пород, дающих больше (меньше) продуктов (мяса, молока, яиц, шерсти).
- 4. Изучение родословной породистых особей крупного рогатого скота, овец или птицы.
- 5. Выяснение суточной нормы и видов корма, выделяемого для крупного рогатого скота, овец и птицы.
- 6. Ознакомление с работами по улучшению потомства крупного рогатого скота, овец и птицы.

#### Подведение итогов

- \* а) заключительная беседа учителя;
- б) в ы п у с к фотоальбома и л и фотогазеты, посвященных экскурсии;
- в) оценка письменных отчетов учащихся по материалам экскурсии, касающимся пород, их признаков и свойств, выращивания и у л у ч ш е н и я потомства.

#### Задания

- I. Прочитайте текст § 10.
- II. Объясните н и ж е с л е д v ю ш е е.
  - 1. Определенное и неопределенное влияние в н е ш н е й с р е д ы на организмы.
  - 2. Прямое и косвенное влияние в н е ш н е й с р е д ы на организмы.
  - 3. Групповая и индивидуальная изменчивость.
  - 4. Понятие «сомнительного» вида.
- III. Ответьте на вопросы.
  - 1. Почему не в с е особи из потомства, оставленного организмом, достигают зрелости?
  - 2. Сколько форм борьбы за существование различал Дарвин?
  - 3. Какая из этих форм является ожесточенной и почему?
- IV. Дайте о пределение термина «естественный отбор».
- V. Заполните с л е д у ю щ у ю таблицу.

#### Сходства и различия между искусственным и естественным отбором

| Показатель                                              | Искусственный (сознательный) отбор | Естественный<br>отбор |
|---------------------------------------------------------|------------------------------------|-----------------------|
| Материал для отбора                                     |                                    |                       |
| Судьба организмов с полезной изменчивостью              |                                    |                       |
| Судьба организмов с нейтральной и вредной изменчивостью |                                    | -                     |
| Направление отбора                                      |                                    |                       |
| Описание индивидуальной изменчивости                    |                                    |                       |
| Скорость воздействия отбора                             |                                    |                       |
| Результат отбора                                        |                                    |                       |

- VI. Сделайте вывод по данным табл. 11.
- VII. Определите правильный ответ в тестовом задании.

Какие явления могут служить примером внутривидовой борьбы?

- А) отношения междуволком, лисицей и зайцем;
- В) отношения между насекомыми и цветковыми растениями;
- С) отношения между саранчой и копытными:
- D) слабый рост всходов густо посаженных растений;
- Е) гибель надземной части многолетних растений на морозе.

### § 10. БОРЬБА ЗА СУЩЕСТВОВАНИЕ И ЕСТЕСТВЕННЫЙ ОТБОР

После того, как была выяснена возможность одомашнивания диких животных и окультуривания диких растений, а также изменения признаков и свойств пород и сортов путем искусственного отбора, Дарвин предположил, что такой процесс может происходить и у организмов, обитающих в природных условиях. Однако для обоснования данного предположения необходимо было, во-первых, изучить индивидуальную изменчивость растений и животных, обитающих в природных условиях, во-вторых, выяснить наличие в природе некоего движущего фактора, схожего с желанием человека.

# Индивидуальная изменчивость растений и животных в природных условиях

Дарвин установил, что организмы нового поколения любого растения и животного отличаются от родителей, а также друг от друга отдельными признаками и свойствами. Он назвал это индивидуальной изменчивостью (рис. 27). По мнению ученого, основная причина изменчивости организмов связана с изменением окружающей среды температуры, влажности, воздуха, пищи и других факторов. Влияние внешней среды на организм осуществляется в определенном и неопределенном виде. В первом случае воздействие внешней среды проявляется у всех организмов, а во втором — у отдельных организмов. Иначе говоря, в первом случае имеет место групповая изменчивость, во втором индивидуальная. Факторы внешней среды могут оказывать на организмы прямое или косвенное влияние. В результате прямого влияния внешней среды изменяется организм, а при косвенном влиянии изменяются его последующие поколения. Существование индивидуальной изменчивости у организмов Дарвин доказал также путем сопоставления вида с его разновидностями. Под «разновидностью вида» он понимал группу организмов с неярко выраженными признаками и свойствами, присущими данному виду. Промежуточные формы между двумя отдельными видами не встречаются. Однако наличие промежуточных форм между видом и его разновидностью совершенно естественно. Поэтому во времена Дарвина разновидности видов называли также «сомнительными» видами. Вследствие наличия в природе разновидностей видов ученые затрудняются в определении численности видов. Основная причина этого состоит в том, что одни ученые считают группу организмов, не достигших степени проявления признаков и свойств, видом, а другие разновидностью вида. Во времена Дарвина во флоре Англии насчитывалось 182 «сомнительных» вида.

#### Скорость размножения организмов

В повседневной жизни вам приходилось наблюдать, какое большое количество потомков производят одуванчик, паслен, домашняя муха, лягушки и другие животные и растения. В табл. 12 приведены данные о количестве потомков, производимых отдельными животными и растениями. Зачастую не все потомки достигают зрелости и успевают дать потомство. Большинство из них погибает на различных стадиях индивидуального развития.



Рис. 27. Изменчивость растений, животных и бактерий.

Таблица 12

#### Уровень плодовитости растений и животных

| Типы организмов          | <ul> <li>Колнчество яни или семян</li> </ul> |
|--------------------------|----------------------------------------------|
|                          | 50000000-60000000                            |
| жиной солитер            | 200000000 - 200000000                        |
| Cem                      | 136000                                       |
| Греска<br>Греска         | (000000)                                     |
| грска<br>Зеленая лягушка | -chije)et                                    |
| Додорожник<br>Подорожник | i 5900040000                                 |
| Подорожник<br>Паслен     | 10800110000                                  |
| Белена                   | 4000004100000                                |
| рслена<br>Гумай          | 235000—238000                                |
| гуман<br>Марь белая      | 1369000                                      |

Причины гибели потомства различны: недостаток пищи, нападение врагов, неблагоприятные погодные условия. Следовательно, каждое живое существо постоянно ведет борьбу за существование и оставление потомства. Термин «борьба за существование» Дарвин применял в широком смысле, т. е. под этим он понимал сложные и многообразные формы взаимоотношений организмов как друг с другом, так и с неблагоприятными условиями неорганической природы, а также оставление ими после себя нормального потомства.

Формы борьбы за существование. Дарвин различал три формы борьбы за существование: а) межвидовую; б) внутривидовую; в) борьбу с неблагоприятными условиями неорганической природы.

**Межвидовая борьба** проявляется в разных формах (рис. 28). Так, волки и лисицы охотятся на зайцев, следовательно, между волками и лисицами, а также между лисицами и зайцами постоянно идет взаимная борьба за существование.

Отсутствие добычи приводит к голоданию и гибели хищников. Индийский скворец, широко распространенный в Центральной Азии, питается саранчой, которая служит также пищей и для воробьев, следовательно, между скворцами и воробьями имеет место конкуренция. Растениями питаются не только копытные животные, но и саранча, быстрое размножение которой служит причиной голодания и гибели копытных животных. Кроме того, жизнь копытных животных зависит от хищников. От растений зависят не только травоядные животные, но и опыляющие их насекомые, а

также соперничающие с ними другие виды растений.

Межвидовая борьба за существование может быть и не столь ожесточенной, так как организмам, относящимся к различным видам, необходима разная пища. Например, скворцы питаются не только саранчой, но и слепнями и другими насекомыми, паразитирующими на теле овец, крупного рогатого скота, а также черешней, виноградом и



Р и с. 28. Межвидовая борьба: I — черный водорез, поедающий рыбу; 2 — орел-змееед с добычей; 3 — повилика, «душащая» клевер; 4 — цветок повилики.

птенцами других птиц. Лисицы, в свою очередь, поедают не только зайцев, но также и мышей, ежей и птиц.

Внутривидовая борьба за существование. В отличие от этого, у организмов, принадлежащих к одному виду, потребности в пище, местах обитания и в других жизненно необходимых факторах являются одинаковыми. Например, между птицами, относящимися к одному виду, в период размножения идет борьба за выбор места для постройки гнезда. У млекопитающих и птиц идет борьба между самцами за обладание самкой во время брачного периода. Между густо посаженными семенами хлопчатника, пшеницы и других растений отмечается внутривидовая борьба за свет, влажность и питательные вещества, в результате чего всходы отстают в росте и развитии. Такое же явление наблюдается и между деревьями и кустарниками, относящимися к одному виду. Самые высокие деревья с раскидистой кроной забирают большую часть солнечных лучей. Их мощная корневая система впитывает из почвы воду и растворенные в ней минеральные вещества. Вследствие этого соседние деревья отстают в росте или перестают расти и погибают (рис. 29, 30).

Борьба организмов с неблагоприятными условиями неорганической природы. Факторы неорганической природы оказывают большое влияние на развитие и выживание организмов. С наступлением осени все однолетние растения, а также надземная часть многолетних травянистых растений погибает. В суровые зимы можно наблюдать и гибель многолетних деревьев, сусликов, дождевых червей, птиц. Зимой вследствие обледенения верхнего слоя воды и снижения содержания растворенного в ней кислорода погибают также рыбы. Гибель многих пустынных растений является результатом недостатка влаги. Живые организмы выживают и дают потомство только тогда, когда они могут противостоять неблагоприятным условиям неорганической природы.

#### Использование человеком взаимоотношений организмов

Учитывая, что между организмами одного вида идет ожесточенная борьба, при закладке новых садов саженцы плодовых деревьев в зависимости от их вида высаживают на определенном расстоянии друг от друга. При создании искусственных лесных насаждений почву, лишенную микоризы, удобряют гифами грибамикоризы, так как последняя, проникая в корни деревьев, снабжает их почвенной влагой и питательными веществами. Это способствует нормальному росту таких деревьев, как дуб, бук, береза. Для искусственного размножения рыб в озерах и водоемах нашей республики их прежде всего очищают от хищных (шука) и не

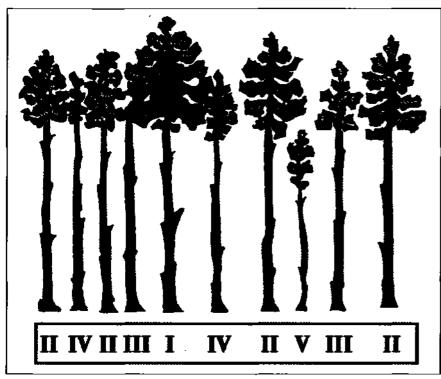



Рис. 29. Борьба между деревьями одного вида.

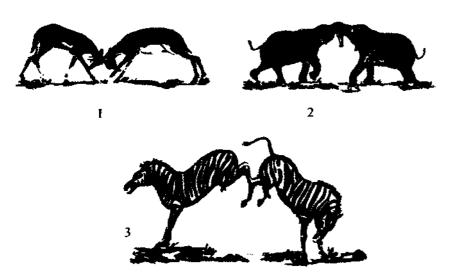



Рис. 30. Внутривидовая борьба: I — олени; 2 — слоны; 3 — зебры.

имеющих особого значения (гамбузия) рыб. Только после этого в водоемах приступают к разведению хозяйственно ценных пород рыб. В целях научно обоснованного ведения охотничьего хозяйства особое внимание обращается на период размножения животных, численность потомства, сроки достижения им зрелости, виды корма, взаимоотношения организмов.

При уничтожении хищных животных — волков и лисиц учитывают их санитарную роль — истребление ими слабых, больных особей.

Дикие растения отличаются большей живучестью, чем культурные, поэтому во избежание их отрицательного влияния на развитие культурных растений (лук, морковь, редис и др.) посевы пропалывают и освобождают от сорных трав. В борьбе против вредных насекомых — черепашки (вредитель зерновых), яблоневой плодожорки, хлопковой совки, тли и других используют микрофанус, "златоглазку, трихограммы, алефинус, подолию и энтобактерии. В борьбе против вредных насекомых большую роль играют насекомоядные птицы, в частности скворцы, синицы и др. Пчелы способствуют получению высоких урожаев от перекрестно опыляемых растений.

#### Естественный отбор

Борьба за существование сопровождается гибелью многих организмов и выживанием некоторых. Поскольку это так, естественно, возникает вопрос, какие из организмов выживают, а какие погибают. В начале темы мы отмечали, что у каждой особи растений и животных, обитающих в природных условиях, присутствует индивидуальная изменчивость, которая может проявляться в трех видах — полезная, нейтральная и вредная. Обычно организмы с вредной изменчивостью погибают на различных этапах индивидуального развития. Нейтральная изменчивость организмов не влияет на их жизнеспособность. Индивиды с полезной изменчивостью выживают благодаря преимуществу во внутривидовой, межвидовой борьбе или в борьбе против неблагоприятных условий абиотической среды. Выживание организмов, обладающих полезными признаками и свойствами, в борьбе за существование и гибель организмов, не имеющих таких признаков и свойств. Дарвин назвал естественным отбором. Если искусственный отбор производится человеком, то естественный отбор осуществляет природа. Когда человек производит искусственный отбор, он всегда преследует свою выгоду, поэтому у сортов и пород, выведенных путем искусственного отбора, хорошо развиты признаки и свойства, полезные для человека, а при естественном отборе на первом месте стоят интересы организма, а не человека. Благодаря этому полезные для организма признаки и свойства из поколения в поколение усиливаются и умножаются. В результате скрещивания организмов с такой наследственной изменчивостью с другими увеличивается число форм с полезными свойствами. Организмы, приспособленные к борьбе за существование, погибают меньше по сравнению с неприспособленными. А это свидетельствует о том, что естественный отбор является основным фактором возникновения новых популяций и видов в процессе приспособления организмов к среде.

#### Формы естественного отбора

Стабилизирующий отбор. Условия среды, в которых обитают организмы, со временем могут постепенно изменяться или оставаться относительно постоянными. В обоих случаях некоторые особи, живушие в определенных условиях, могут подвергаться мутационным, комбинативным изменениям, а другие — сохранять признаки и свойства, присущие их предкам. При определенном постоянстве среды естественный отбор сохраняет из числа особей одного вида те, которые имеют признаки и свойства, присущие своим предкам, и приспособлены к данным условиям среды, и уничтожает особи с резкой наследственной изменчивостью. В результате этого, например, в течение миллионов лет сохранились почти в неизменном виде из кистеперых рыб — латимерия, из пресмыкающихся — гаттерия, из млекопитающих — яйцекладущие виды, сумчатые, из голосеменных — гинкго билоба. Выживание особей с неизменными признаками предков и вымирание особей, подвергнутых изменениям в условиях относительно постоянной среды, называется стабилизирующим отбором (рис. 31).

Есть много примеров, которые убедительно показывают, что **в** природе действительно имеет место стабилизирующий отбор. Так, **в** Северной Америке после сильной снежной пурги в 1892 г. ученыйбиолог Бемпес перенес в теплое помещение 136 полузамерзших воробьев, из которых 72 ожили, а 64 погибли. При их обследовании выяснилось, что выжившие воробьи имели крылья средней длины, **а** крылья погибших были относительно длиннее или короче. Действие стабилизирующего отбора проявляется также и у людей. Так, клетки нормального человека содержат 44 аутосомы и 2 половые хромосомы. Если оплодотворенная яйцеклетка женщины будет содержать 44 аутосомы и Y-хромосому, другими словами, если в ней будет недоставать X-хромосомы, то развитие плода в утробе матери приостанавливается и по истечении 2—3 месяцев происходит выкидыш.

**Движущий отбор.** При изменении условий среды выживают те особи вида, у которых проявилась наследственная изменчивость и **в** 

связи с этим развились признаки и свойства, соответствующие новым условиям, а те особи, которые не имели такой изменчивости, погибают. Во время своего путешествия Дарвин обнаружил, что на океанических островах, гле господствуют сильные ветры. встречается мало длиннокрылых насекомых и много насекомых с рудиментарными крыльями и бескрылых насекомых. Как объясняет Ларвин, насекомые с нормальными крыльями не могли противостоять сильным ветрам на этих островах и погибали. А насекомые с рудиментарными крыльями и бескрылые совсем не поднимались в воздух и скрывались в щелях, находя там укрытие. Этот процесс, который сопровождался наследственной изменчивостью и естественным отбором и продолжался в течение многих тысяч лет, привел к сокрашению численности на этих островах длиннокрылых насекомых и к появлению особей с рудиментарными крыльями и бескрылых насекомых. Естественный отбор, который обеспечивает возникновение и развитие новых признаков и свойств организмов. называется движущим отбором.

Дизруппивный отбор. Среди организмов определенного вида иногда встречаются особи с двумя или более различными формами. Это — результат особой формы естественного отбора — дизруптивного отбора. Так, у божьих коровок встречается две формы жестких крыльев — с темно-красной и красноватой окраской. Жучки

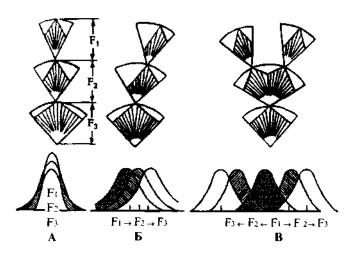



Рис. 31. Формы естественного отбора: схема действия стабилизирующего (A), движущего (Б) и дизруптивного (В) отбора; F — поколения. Заштрихованные участки — виды, вымершие на популяционной волне. Размер дуги окружности отбора внутри одного рода соответствует его норме реакции.

с красноватыми крыльями реже погибают зимой от холода, но летом дают немногочисленное потомство, а с темно-красной окраской крыльев, наоборот, чаще погибают зимой, будучи не в состоянии противостоять холодам, но летом дают многочисленное потомство. Следовательно, эти две формы божьих коровок в силу разной приспособленности к различным сезонам сумели веками сохранить свое потомство.

#### § 1 1 . ЭКСКУРСИЯ ПО ОЗНАКОМЛЕНИЮ С БОРЬБОЙ ЗА СУЩЕСТВОВАНИЕ В ПРИРОДЕ\*

Цель. Закрепление в природных условиях знаний о многообразии видов в природе и приспособленности организмов к среде.

Оборудование. Бинокль, сачки, садовые ножницы, стеклянные банки с крышкой, папка для гербария, старые газеты, тетради, ручки.

#### Наблюдение за борьбой за существование

#### А. Борьба за существование в растительном мире

- 1. Межвидовая борьба среди растений. Наблюдение за видами, произрастающими среди других растений (однолетних, многолетних травянистых растений, кустарников, деревьев), и определение различий между ними (изготовление гербария из травянистых растений и повилики).
- 2. Внутривидовая борьба среди растений. Сопоставление между собой густо- и редкорастущих однолетних и многолетних травянистых растений, кустарников, деревьев и выявление различий между ними.
- 3. Борьба растений с неблагоприятными условиями внешней среды. Сопоставление между собой подорожника или одуванчика, растущих на почвах с избытком или недостатком влаги, и объяснение причин различий между ними, сбор материала для гербария. Наблюдение за осенним листопадом и за высыханием однолетних растений.

#### Б. Межвидовая борьба в мире животных

- 1. Наблюдение за питанием паука-крестовика мухами, комарами и осами.
- 2. Наблюдение за питанием насекомоядных птиц ласточек, скворцов, воробьев комарами, мухами, богомолами и кузнечиками (с помощью бинокля).
  - 3. Наблюдение за питанием божьих коровок и тлей.
- 4. Наблюдение за питанием скворцов, воробьев и сорок различными насекомыми, а также семенами и плодами растений.
- 5. Рассматривание листьев карагача и тополя, обглоданных листоедами и златкой (сбор материала для гербария).

#### В. Внутривидовая борьба в мире животных

- 1. Наблюдение за борьбой за корм между воробьями и скворцами.
- 2. Наблюдение за соперничеством самцов птиц за обладание самкой или за овладение гнездом.

# Г. Борьба животных с неблагоприятными условиями внешней среды

- 1. Наблюдение за отлетом насекомоядных птиц в теплые края с наступлением осени.
- 2. Наблюдение за переходом насекомых в состояние диапаузы (временное приостановление размножения, снижение или прекращение двигательной активности, питания).

#### Задания

- I. Прочитайте текст § 12.
- II. Объясните, что изображено на рис. 32—38.
- III. Основываясь на знаниях, полученных при изучении зоологии, а также на фильмах о животных, демонстрируемых по телевидению, расскажите преподавателю и л и однокурсникам, какие п р и с п о с о б л е н и я и м е ю т хищные животные для охоты и какие п р и с п о с о б л е н и я и м е ю т их жертвы для с в о е й зашиты.
- IV. Объясните, как рыбы п р и с п о с о б и л и с ь к водной, а птицы к в о з д у ш н о й среде, исходя из их внутреннего, в н е ш н е г о строения и ф у н к ц и й органов.
- V. Определите правильные ответы в тестовых заданиях.
  - 1. Какое из перечисленных приспособлений является мимикрией?
    - А) окраска тела животного сливается с окружающей средой или близка к ней;

<sup>\*</sup> План приводится на примере парка.

- в) сходство беззащитных животных по цвету и форме с другими хорошо защищенными животными;
- С) подражательное сходство животного с каким-либо предметом окружающей среды;
- D) бросающаяся в глаза яркая окраска некоторых животных;
- Е) выделение животными ядовитой жидкости или запаха.
- 2. Какое из перечисленных приспособлений является маскировкой?
  - A) окраска тела животного сливается с окружающей средой или близка к ней:
  - В) сходство беззащитных животных по цвету и форме с другими хорошо защищенными животными;
  - С) подражательное сходство животного с каким-либо предметом окружающей среды;
  - D) бросающаяся в глаза яркая окраска некоторых животных;
  - Е) выделение животными ядовитой жидкости или запаха.

#### VI. Ответьте на вопросы.

- 1. Какие приспособления имеют растения для защиты от животных?
- 2. Какие приспособления возникли у растений против неблагоприятных абиотических условий?
- 3. Как в ходе исторического процесса возникли приспособления у растений и животных?
- 4. Объясните на примерах относительность приспособлений.
- 5. Дайте определение жизнеспособности и конкурентоспособности.

#### § 12. ПРИСПОСОБЛЕННОСТЬ ОРГАНИЗМОВ И ЕЕ ОТНОСИТЕЛЬНОСТЬ

Приспособленность организмов неразрывно связана с их жизнеспособностью, способностью к конкуренции и оставлению нормального потомства.

**Жизнеспособность.** Мутационная изменчивость, обычно проявляющаяся на различных этапах онтогенеза, во многих случаях приводит к снижению жизнеспособности организмов и нередко является причиной их гибели. Исходя из этого, под жизнеспособностью следует понимать нормальное проживание организмов в среде обитания без резкого изменения генотипа.

Способность к конкуренции — это преодоление организмами препятствий, возникающих в неживой и живой природе, в частности при добывании ими пищи, борьбе за обладание самкой и за места обитания. В отдельных случаях способность к конкуренции у организмов бывает развита слабо, хотя они и являются жизнеспособными.

**Оставление потомства** связано с нормальным протеканием процесса размножения организмов. Если в половых органах или клетках организма имеются какие-либо недостатки, процесс оплодотворения

не будет проходить нормально и организм не даст потомства. Эти три компонента приспособленности организмов тесно взаимосвязаны между собой и являются результатом эволюции, возникающим в историческом процессе в ходе естественного отбора.

Заслуги Ч. Дарвина не ограничиваются только тем, что он доказал изменение видов в историческом процессе. Ученый первым в истории науки дал научно обоснованное объяснение проблемы приспособленности организмов. В повседневной жизни вы хорошо знаете о приспособленности рыб к водной, а птиц — к воздушной среде. Это лишь отдельные примеры. В действительности же приспособления живых существ к условиям среды могут выражаться по-разному.

#### Приспособления в мире животных

Приспособленность животных к условиям среды проявляется в их внешнем и внутреннем строении, размножении, заботе о потомстве и др.

Покровительственная окраска. В большинстве случаев окраска тела животных соответствует окраске среды, в которой они живут, или близка к ней (рис. 32). Обычно животные пустынных зон — черепахи, ящерицы, змеи — имеют окраску, близкую к цвету песка, а северные животные — медведь, куропатка, лисица — белую; богомолы, стрекозы, живущие среди зеленых растений, обладают зеленой окраской; окраска гусеницы капустной бабочки не отличается от цвета капустного листа, которым она питается. С сезонным изменением цвета среды изменяется и окраска животных. Например, лисицы, зайцы, куропатки и горностаи, обитающие в европейской зоне, зимой имеют одну окраску, а летом — другую.

Маскировка. Форма и окраска тела животных иногда напоминают окружающие их листья, ветви, почки, растения. Например, насекомое чупчик по своей форме и окраске напоминает тонкий прутик, рыба-игла — водоросли, морской конек, а также рыбатряпичник — подводные растения (рис. 33). Некоторые моллюски похожи на почки деревьев. Распространенная на Малайском архипелаге бабочка каллима имеет крылья, по форме, узорам и прожилкам очень похожие на листья.

Предостерегающая окраска. Некоторые животные имеют разноцветную, бросающуюся в глаза яркую окраску. Майские жуки, божьи коровки, шмели, осы, большинство бабочек своей окраской как бы «предостерегают» своих врагов. Обычно у животных с предостерегающей окраской имеются дополнительные средства защиты от врагов. К таким средствам относятся выделяемые ими неприятные запахи или ядовитые жидкости, щетинки и иголочки на теле.



Рис. 32. Покровительственная окраска животных: I — зеленый кузнечик; 2 — гусеница бабочки-пяденицы; 3 — квакша; 4, 5 — оперение куропатки летом и зимой; 6 — козодой; 7, 8 — горностай летом и зимой.

Мимикрия. В некоторых случаях животные, стараясь защититься от врагов, имитируют форму и окраску тела животных с предостерегающей окраской. Имитирование под цвет и форму хорошо защищенных, мало истребляемых животных некоторыми беззащитными и съедобными животными называется мимикрией (рис. 34). Примером мимикрии может служить схожесть окраски некоторых мух с осами, тараканов — с божьими коровками, неядовитых змей — с ядовитыми, отдельных видов бабочек — с осами и шмелями. Следует отметить, что покровительственная и предостерегающая окраска животных становится более эффективной в сочетании с их поведением. Например, окраска оперения выпи, обитающей в камышах, схожа с цветом камыша. Несмотря на это с приближением опасности она вытягивает шею и, подняв клюв кверху, стоит неподвижно. В таком положении она становится неприметной для врага.

Имитация цвета и формы присуща не только самим организмам, но даже их яйцам. Так, кукушка не строит гнезда для откладывания яиц, как другие птицы, а подбрасывает их в гнезда мелких птиц —



Рис. 33. Маскировка животных: I — богомол; 2 — чупчик; 3 — выпь; 4 — морской конек; 5 — рыба-тряпичник; 6 — морской «клоун»; 7 — рыба-игла.

дроздовой камышовки, садовой славки, горихвостки. Интересно то, что прежде чем отложить свои яйца, она осматривает яйца в гнездах этих птиц и откладывает точно такие же по цвету и размеру (рис. 35).

Существуют также приспособления животных, связанные с необходимостью оставления потомства. Например, самки некоторых насекомых привлекают к себе самцов с помощью запаха, выделяемого расположенными на их теле железами. Некоторые приспособления связаны с выхаживанием потомства. Например, американский сом носит свою икру прикрепленной к брюху. Жабаповитуха носит оплодотворенные яйца на спине до тех пор, пока из них не появятся молодые жабы. В отличие от низших позвоночных, птицы откладывают яйца в специально построенные гнезда и согревают их своим телом. После вылупления птенцов из яйца они беспрерывно кормят и защищают их от врагов. Приспособления, связанные с заботой о потомстве, особенно сильно развиты у млекопитающих.

Помимо приспособлений у отдельных организмов, существуют также приспособления в пределах вида. Примером таких при-

способлений могут служить приспособления, связанные с питанием, размножением, оставлением потомства, защитой от врагов, преодолением неблагоприятных погодных условий у организмов, живущих группами.

#### Приспособленность в мире растений

У растений так же, как и у животных, существует ряд приспособлений к факторам внешней среды. Например, растения поразному приспособлены к дефициту влаги. Листья одних растений сверху покрыты восковым слоем (фикус), других — густыми волосками (коровяк джунгарский). Листья саксаула превратились в «чешуйки». Листья янтака мелкие и жесткие, большинство ветвей



Рис. 34. Предостерегающая окраска и явление мимикрии у животных: I — бабочка белянка; 2 — ядовитая бабочка геликоннус; 3 — стекляниица; 4 — муха жужжалка; 5 — обыкновенная оса; 6 — ядовитый коралловый аспид; 7 — неядовитый американский уж; 8 — божья коровка; 9 — таракан.

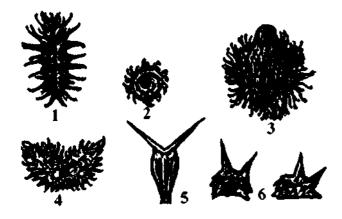






Рис. 35.

имеют форму колючек. Кактус, агава, алоэ относятся к числу сочных растений. Некоторые растения имеют очень короткий вегетационный период. Например, лютик едкий, костер Дантонии начинают расти и развиваться ранней весной и успевают дать семена до конца вегетации. Верблюжья колючка, полынь и подобные им растения в засуху выживают, сбрасывая листья. У растений существует ряд приспособлений, связанных с их опылением. Растения, опыляемые насекомыми, привлекают их своими крупными, яркими цветками, которые обладают приятным запахом и содержат нектар. Цветки растений, опыляемые при помощи ветра, наоборот, мелкие, невзрачные, бесцветные, без запаха, с легкой пыльцой.


У растений встречаются и такие приспособления, которые способствуют распространению их плодов и семян. Распространяемые с помощью ветра плоды и семена березы, карагача, айланта, клена имеют крыловидные отростки, семена хлопчатника снабжены волосками. Плоды череды, зверобоя, дикой моркови, лопуха, рогоголовника снабжены крючками, колючками, волосками, с помощью которых они цепляются за шерсть животных, перья птиц, одежду человека и разносятся на большие расстояния (рис. 36, 37).

Мясистые, сочные косточковые и бескостные плоды поедаются птицами и другими животными, и их непереваренные семена выделяются с пометом и таким образом распространяются на другие территории. Семена и плоды, распространяемые водой, также имеют некоторые приспособления.

Таким образом, под приспособленностью следует понимать обитание живых организмов в определенной среде и оставление потомства.

**Происхождение приспособленности организмов.** Дарвин научно объяснил происхождение сложных и многообразных приспособлений организмов к определенным условиям внешней среды. Для подтверждения правильности положений Дарвина проанализируем

данные об изменении окраски тела бабочек. Об изменении окраски тела почти у 70 видов чешуекрылых было известно начиная с XVIII—XIX вв. Причина таких изменений была всесторонне изучена на примере бабочки, называемой березовой пяденицей (рис. 38). Когда эта бабочка неподвижно сидит на коре белой березы, ее трудно заметить, следовательно, ее окраска выполняет защитную функцию. Последние 200 лет во многих странах Европы увеличилось число заводов и фабрик, отходы которых в виде пыли и сажи постепенно загрязняли не только города и промышленные центры, но и оседали на коре, ветвях и листьях деревьев, придавая им темный оттенок. Известно, что изменение факторов среды не может не влиять на обитающие в этой среде организмы. Эти изменения, как



Р и с. 36. Распространение плодов с помощью животных и человека: I — двусемянка репишки; 2 — боб цепкой люцерны; 3 — корзинка лопуха с крючочками; 4 — соплодие дурнишника; 5 — вонзающийся плод устели-поле; 6 — вонзающиеся плоды якорцев.

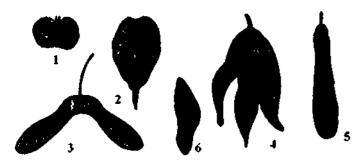



Рис. 37. Распространение плодов с помощью ветра: I — плод березы; 2 — плод карагача; 3 — плод клена; 4 — плод айланта; 5 — плод ясеня; 6—плод сосны.

отмечалось выше, бывают вредными, нейтральными и полезными. В соответствии с этим, если в сельских местностях в результате мутационной изменчивости появлялись бабочки с темной окраской, их быстро поедали насекомоядные птицы, так как у таких бабочек не было покровительственной окраски. В промышленных центрах, напротив, темная окраска бабочек, будучи схожей по цвету с корой и ветвями деревьев, выполняла защитную функцию. Таким способом в городах увеличивалось число березовых пядениц с темной окраской, а в сельских местностях — со светлой. Наблюдения за насекомоядными птицами показали, что в промышленных центрах синицы, сойки и другие птицы больше поедали бабочек со светлой окраской, а в сельской местности — березовых пядениц темного цвета. По определению генетиков, изменение окраски тела и поведения березовой пяденицы связано с генными мутациями.

Приведенные данные показывают, что покровительственная окраска чешуекрылых является результатом наследственной изменчивости и естественного отбора. А это, в свою очередь, свидетельствует о том, насколько правильными были положения Дарвина.

#### Относительность приспособленности организмов

Приспособленность организмов к условиям среды возникла под влиянием естественного отбора на протяжении длительного исторического процесса. Несмотря на это она является не абсолютной, а относительной, так как изменение среды происходит быстро, а приспособления возникают медленно. Относительность приспособленности организмов можно доказать с помощью множества фактов. Прежде всего, необходимо отметить, что приспособления, возникшие у организма для защиты от одного вида, не могут быть эффективными для защиты от другого. Например,

нижний и верхний панцирь степной черепахи защищает ее от многих хищников, однако не может защитить от таких хищных птиц, как орел, бородач, сарыч степной, которые сбрасывают черепаху с большой высоты на камни, раскалывают ее панцирь и съедают. Точно так же колючая шкурка ежа не может защитить его ото всех хищных животных, в частности, от лисиц. Известно, что опасные для многих животных и человека



Р и с. 38. Городская (темная) и сельская (светлая) формы березовой пяденицы.

ядовитые змеи поедаются мангустами, ежами и свиньями. Осы, шмели не поедаются многими насекомоядными птицами, однако они являются основной пишей для птиц-осоедов из семейства ястребиных, встречающихся в бассейне Сырдарьи. Кроме того, приспособления, возникшие у организма в одних условиях, в других условиях могут быть бесполезными и даже вредными. Например, строение и функции рыб являются полезными в водной среде, тогда как в воздушной среде они приводят к их гибели. Длинные крылья и слабые ноги ласточки, хотя являются весьма полезными в воздушной среде, но служат серьезным препятствием для перемещения по земле. Перепонки на лапках горных гусей являются вредными для них на суше. Инстинкты, сформировавшиеся у животных под влиянием борьбы за существование и естественного отбора, иногла оказываются нецелесообразными. Например, ночные бабочки обладают инстинктом собирать нектар с белых цветов. Вместе с тем каждый из вас наблюдал, как они погибают, приближаясь к источнику освещения. Все эти и многие другие факты свидетельствуют о том, что приспособления организмов являются относительными, а не абсолютными.

#### Задания

- I. Прочитайте текст § 13.
- II. Рассмотрите рис. 39—40.
- III. Запомните о пределения вида и популяции.
- IV. Определите правильные ответы в тестовых заданиях.
  - 1. Критерии вида ...
    - А) морфологический, генетический, онтогенетический, систематический, популяционный, эмбриологический;
    - В) морфологический, физиологический, биохимический, экологический, географический, генетический;
    - С) генетический, систематический, популяционный, экологический, географический, биохимический;
    - D) физиологический, популяционный, физиолого-онтогенетический, морфологический, биохимический;
    - Е) биохимический, морфологический, физиологический, систематический, генетический, эмбриологический.
  - 2. Пути образования новых видов ...
    - А) дивергенция, экологическое, сравнительно-анатомическое, систематическое;
    - В) аллопатрическое, симпатрическое, географическое, экологическая изоляция;
    - С) географическое, экологическое, половая изоляция, популяционное;
    - D) эмбриологическое, сравнительно-анатомическое, систематическое, экологическое;

- Е) географическое, экологическое, эмбриологическое, сравнительно-анатомическое.
- V. Ответьте на вопросы.
  - 1. Что вы понимаете под «политипическим видом»?
  - 2. Что означает термин «дивергенция»?
  - 3. Что вы знаете об ареале и численности популяций каждого вида?
  - 4. Какие факторы воздействуют на географическую изоляцию популяций?

# § 13. ВИД - ОСНОВНОЙ ЭТАП ЭВОЛЮЦИИ

Прежде чем приступить к изучению биологического вида, необходимо понять сущность этого термина. В настоящее время в биологической науке под видом понимают совокупность близких по происхождению организмов, относительно схожих в морфофизиологическом отношении, способных скрещиваться между собой, давать потомство и занимающих определенный ареал в природе. Положительная сторона данного определения состоит в том, что оно трактует в качестве вида совокупность скрещивающихся между собой и размножающихся организмов. Однако не следует забывать, что не все организмы размножаются половым путем. В природе существуют организмы, способные размножаться бесполым путем. Отсюда следует, что в биологической науке еще не сформулировано определение вида, охватывающее специфические признаки и свойства всех видов организмов. В связи с этим на практике для разграничения видов используются следующие критерии.

Критерии вида. Совокупность признаков и свойств, присущих тому или иному виду, называется критерием вида. Существуют следующие критерии вида.

Морфологический критерий отражает внешнее и внутреннее сходство особей одного вида. Так, черная и белая вороны относятся к различным видам, что можно определить по их внешнему виду. Но и организмы, которые относятся к одному виду, могут отличаться друг от друга некоторыми признаками и свойствами. Однако эти различия очень незначительны по сравнению с теми, что наблюдаются у особей разных видов. Между тем существуют виды, которые обладают внешним сходством, но не могут скрещиваться между собой. Это так называемые виды-двойники. Так, у дрозофилы, малярийного комара и черной крысы установлено два вида-двойника. Виды-двойники встречаются также у земноводных, пресмыкающихся, птиц и даже у млекопитающих. Следовательно, морфологический критерий не является определяющим для разграничения видов. Однако данный

критерий в течение длительного времени считался основным и единственным при определении видов (рис. 39).

Физиологический критерий. В его основе лежит сходство жизненных процессов у особей каждого вида, в особенности размножения. Представители различных видов не скрещиваются между собой, а если и скрещиваются, то не дают потомства. Нескрещиваемость видов объясняется различиями в строении половых органов, разными сроками размножения и другими причинами. Однако в природе



Р и с. 39. Критерии вида: A — морфологический: I — большая синица; 2 — синица лазаревка: E — генетический: I, 2 — виды крыс, обладающих различным набором хромосом; B — физиологический: I — овсянка обыкновенная; 2 — овсянка садовая;  $\Gamma$  — биохимический: I — люпин многолистный; 2 — желтый люпин узколистный;  $\mathcal{I}$  — экологический: I — лютик ядовитый; 2 — лютик стелющийся; E — географический: поле, влажные луга; I — европейская ель; 2 — сибирская ель.

бывают случаи, когда некоторые виды растений (тополь, ива), птиц (канарейка) и животных (зайцы) могут скрещиваться между собой и давать потомство. Это также свидетельствует о том, что одного физиологического критерия также недостаточно для разграничения видов.

Биохимический критерий. Организмы различных видов различаются по своему химическому составу, т. е. по содержанию белков, углеводов, липидов, нуклеиновых кислот и других органических веществ. Но главными считаются различия в качестве и количестве молекул ДНК и белков в клетке. При определении видовой принадлежности организмов решающее значение имеет установление различий в их нуклеиновых кислотах.

Географический критерий. Ареал, занимаемый видом, может быть широким или узким, повсеместным или ограниченным. Один ареал могут населять два или три вида, а другие — несколько или множество видов. Следовательно, географический критерий так же, как и другие, не может быть определяющим.

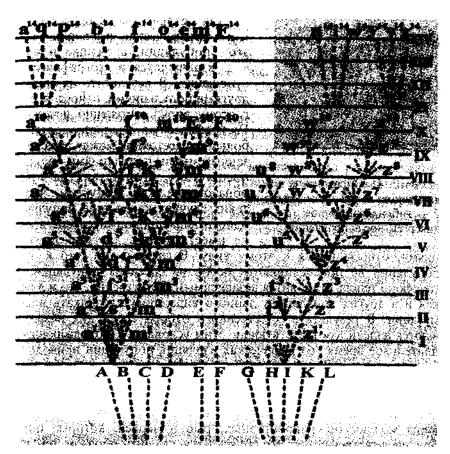
Экологический критерий. Под этим критерием понимают конкретные условия среды, в которых живут и к которым приспособились особи того или иного вида. Например, на полях и лугах произрастает ядовитый, во влажных местах — ползучий, по берегам рек, водоемов, по болотистым местам — жгучий лютик.

Генетический критерий. Под этим критерием понимаются характерные для каждого вида набор хромосом, строение и окраска. Один вид-двойник черной крысы имеет 38, другой — 42 хромосомы. Хотя генетический критерий характеризуется некоторым постоянством, это сходство относительно, так как внутри вида могут наблюдаться различия по числу и строению хромосом. Кроме того, у разных видов число хромосом может быть одинаковым. Например, капуста и редька имеют по 18 хромосом.

Таким образом, ни один из приведенных критериев не является всеобъемлющим, поэтому для определения видов следует пользоваться совокупностью всех критериев или их большинством.

#### Политипические виды

Каждый вид растения и животного представлен более или менее отличающимися друг от друга особями. Так, длина тела божьих коровок, обитающих в окрестностях кишлака Хумсан, составляет от 5,5 до 8 мм, окраска варьирует от светло- до темно-коричневой, а величина и форма крапинок колеблется от почти незаметных до ярко выраженных. Точно так же установлено, что вредители картофеля — колорадские жуки, распространенные в окрестностях Ташкента, по


своим размерам намного крупнее жуков, обитающих на территории Тараса (Казахстан). Такое относительное разнообразие можно наблюдать и у других видов растений и животных. Следовательно, каждый вид является политипическим.

**Дарвин о видообразовании.** На основании теории естественного отбора Дарвин объяснил происхождение не только приспособленности организмов, но и новых видов.

Изучение видообразования сталкивается с двумя трудностями: вопервых, видообразование в природе происходит в течение длительного времени, во-вторых, этот процесс у различных организмов протекает по-разному. При изменении условий жизни число индивидуальных различий особей одного вида в результате естественного отбора увеличивается и отмечается расхождение признаков внутри вида. В результате внутри одного вида образуется несколько групп с разными признаками и свойствами. Естественно, что борьба за существование в большинстве случаев приведет к постепенному вымиранию промежуточных форм и выживанию тех, которые приспособились к изменившейся среде. Таким путем от одного родоначального вида в историческом процессе образуется несколько новых видов. Согласно учению Дарвина, новые виды возникают за счет наследования из поколения в поколение и постепенного накопления незначительных изменений, приобретенных организмами в онтогенезе. В результате приспособления организмов внутри одного вида к различным условиям образуется несколько новых видов. На рис. 40 отражено возникновение из вида А — трех, из вида Б — двух новых видов. Как видно из рисунка, изменения в новых видах А, в свою очередь, привели к образованию 14 новых видов. Возникновение из одного вида в определенном историческом процессе нескольких новых видов Дарвин назвал расхождением признаков родоначального вида, т. е. дивергенцией. В отдельных случаях новые вилы возникают в результате постепенного изменения родоначального вида. Примером этого может служить образование видов  $E^{10}$ .  $F^{10}$  при постепенном изменении видов E. F.

# Направления образования новых видов

После Дарвина в результате стыковки генетики, экологии, систематики и других естественных наук с классическим дарвинизмом были накоплены многочисленные данные о биологическом виде, его составе, возникновении новых видов. Согласно этим данным, любой биологический вид имеет политипическое строение, т. е. он состоит из особей, более или менее различающихся в морфологическом, физиологическом, экологическом и генетическом



Р и с. 40. Образование новых видов (дивергенция) по Дарвину: А — L — виды исходного рода;  $a^7$ ,  $m^7$ ,  $u^7$ ,  $z^7$ ,  $a^8$ ,  $m^8$ ,  $u^8$ ,  $z^8$  — разновидности видов;  $a^{10}$ ,  $f^{10}$ ,  $m^{10}$ ,  $z^{10}$  — новые виды; I—XIV — условное обозначение промежутка времени в тысячи поколений.

отношениях. Были определены ареалы, занимаемые видами, различия в численностях популяций. Обычно численность популяций видов, населяющих обширные ареалы, велика, а в разбросанных ареалах — мала. Генофонд любого вида состоит из совокупности неразрывно связанных между собой генов и хромосом. Он обеспечивает приспособление организмов этого вида к условиям внешней среды.

Образование нового вида происходит вследствие создания нового генофонда за счет разрушения совокупности взаимосвязанных генов и хромосом родоначального вида.

По признанию ученых, в настоящее время образование новых видов происходит в нескольких направлениях (рис. 41).

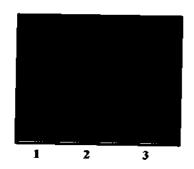



Рис. 41. Образование новых видов: *I* — филетическое; *2* — гибридизационное; *3* — дивергентное направления.

Аллопатрическое видообразование или географическая изоляция. При этом популяции, входящие в один вид, изолируются в географическом отношении. В результате их связи с другими популяциями, относящимися к этому виду, постепенно исчезают. Географическую изоляцию создают большие расстояния между ареалами, занимаемыми популяциями, водные препятствия, препятствия на суще, образование гор. Допустим, что в таких случаях какая-либо популяция одного вида продолжительное время не имеет связи с другими популя-

циями, относящимися к этому виду. В связи с тем, что к этой популяции не присоединяются особи из соседних популяций, ее генофонд теперь становится независимым. Естественно, что и в ней, как и в других популяциях данного вида, могут возникать новые мутации. В результате естественного отбора среди них накапливаются аллели, соответствующие этим условиям. Продолжающаяся длительное время географическая изоляция популяции приводит в конечном итоге к биологической изоляции, т. е. к нескрещиваемости с особями других популяций этого вида. Примеры образования новых вилов вследствие географической изоляции весьма многочисленны. Например, в озере Байкал существуют многочисленные виды моллюсков, ракообразных, рыб и червей, которые нигде больше не встречаются. Это объясняется, главным образом, тем, что 20 млн лет назад озеро Байкал было отделено от других водных бассейнов в результате образования гор. Точно так же обитающий в Сырдарье и Амударье вид рыб — лжелопатонос — появился в результате географической изоляции. Лжелопатонос относится к древним осетровым, и близкие к нему виды рыб встречаются в реке Миссисипи (Северная Америка).

Наглядным примером видообразования в направлении географической изоляции является также род хлопчатника. Виды этого рода отделялись друг от друга начиная с мелового периода и распространились по Америке, Азии и Австралии.

Симпатрическое видообразование. Иногда изоляция наблюдается в пределах ареала родоначального вида. Изолированные популяции распространяются в одном ареале с родоначальным видом. Как правило, группа изолированных особей отличается от представителей родоначального вида по срокам скрещивания, месту обитания или полу. От изолированных таким образом популяций в результате мутационных изменений и естественного отбора

образуются новые виды. Например, известно, что в озере Ланао, возникшем на Филиппинах 10 тыс. лет тому назад, только от одногоединственного родоначального вида рыб образовалось 18 видов рыб, а от одного родоначального вида из отряда бокоплавающих ракообразных — 250 новых видов. Симпатрическое образование новых видов является результатом экологической изоляции.

Полиплоидное видообразование. Одна из разновидностей мутационной изменчивости связана с изменением числа хромосом. В отдельных случаях при митотическом делении клетки под воздействием внешней среды хромосомы неравномерно распределяются между дочерними клетками. В результате в ядре одной клетки число хромосом увеличивается на одну или две, а в ядре второй — уменьшается. Увеличение или уменьшение числа хромосом в отдельных случаях лежит в основе образования новых видов.

Например, в роде скерды из семейства сложноцветных встречаются виды с 3, 4, 5, 6 и 7 хромосомами, в роде илака — виды, содержащие от 12 до 43 хромосом. Виды, образовавшиеся в результате увеличения или уменьшения числа хромосом, называются анеуплоидными.

На окраинных участках ареала вида при наличии неблагоприятных условий происходят изменения в веретене деления клетки. Это, в свою очередь, препятствует расхождению хромосом к обоим полюсам клетки. Поэтому количество хромосом в материнской клетке удваивается. Например, существуют виды хлопчатника с 26 и 52 хромосомами. Наблюдаются случаи не только двукратного, но и многократного изменения числа хромосом родоначального вида. Установлены, например, виды рода хризантем с 18, 36 и 90 хромосомами, виды рода табака с 24, 48, 72, виды пшеницы с 14, 28, 42 хромосомами. Виды, связанные с кратным увеличением числа хромосом, называются полиплоидными. Полиплоидные виды более приспособлены к неблагоприятным условиям внешней среды по сравнению с видами, имеющими диплоидный набор хромосом.

Образование новых видов путем гибридизации. Виды некоторых растений образовались путем гибридизации. Например, слива возникла в результате удвоения числа хромосом после скрещивания вишни с алычой. У вишни гаплоидный набор хромосом равен 16, у алычи — 8, следовательно, у гибридов, образовавшихся при их скрещивании, гаплоидный набор хромосом равен 24. Однако в эксперименте с бесплодными гибридами эти гибриды дали потомство за счет удвоения числа хромосом. В результате образовался новый вид.

Так же возникли виды хлопчатника Нового Света. По мнению ученых, виды хлопчатника xirzutum и barbadenze с набором хромосом 52 появились в результате скрещивания между собой

видов raymondi и xerbatseum с другим видом, тоже имеющим 13 хромосом в гаплоидном наборе, и последующего удвоения числа хромосом гибридов.

Как видно из изложенного, симпатрическое образование новых видов осуществлялось различными способами.

#### § 14. ЛАБОРАТОРНОЕ ЗАНЯТИЕ.

#### ОЗНАКОМЛЕНИЕ С МОРФОЛОГИЧЕСКИМИ КРИТЕРИЯМИ ВИДА

Оборудование. Гербарии видов вьюнка линейчатого и вьюнка полевого.

Ход занятия.

- 1. После объявления темы по указанию учителя по одному на каждый стол распределяются гербарии вьюнка линейчатого (Convolvulus lineatus) и вьюнка полевого (Convolvulus arvensis) (табл. 13).
- 2. Каждый учащийся проводит сравнительное изучение обоих видов вьюнка, обращая внимание на форму и длину стебля, форму листьев, их расположение на стебле, лепестки подчашия и венчика, коробочки, их размер, цвет, форму.
- 3. Приведенные в табл. 13 данные помогут различить два вида выонка по морфологическому критерию.

Таблица ЈЗ

#### Convolvulus lineatus

Травянистое стелющееся растение, 40—110 см длины, Листья с черенками, копьевидные. с острыми или тупыми боковыми частями. Цветки по 1—2, выходят из пазухи листа. Листочки цветоложа обратно-яйцевидные. Лепестки венчика белого, беловатого, розового цвета, 15—20 мм длины, с пятью еле заметными пушистыми полосками. Коробочка широко-яйцевидная, без опушения. 6—7 мм длины.

#### Convolvulus anensis

Стебель и листья покрыты нежным пущком. Стеблей несколько. Стебли стелющиеся, в отдельных случаях прямостоячие, с короткими ветвями. Высота растения 5—15 см. Листья у основания стебля представляют собой не разделенную на части целую пластинку. Место расположения листового черенка неширокое. Листья, находящиеся на верхушке стебля, с ланцетовидными концами. Лепестки цветоложа ланцетовидные, 7—8 мм длины. Лепестки венчика белого, беловатого, розового цвета, 15—20 мм длины. На внешней стороне имеются пять толстых пушистых полосок. Коробочка обратно-яйцевидная, 5—6 мм длины. Цветет в мае-августе. Оба вида плодоносят в июне-сентябре.

# Задания

- I. Прочитайте текст § 15.
- II. Заполните таблицу.

Таблица 14

| Элементарный материал эволюции |  |
|--------------------------------|--|
| Элементарная единица эволюции  |  |
| Элементарное явление эволюции  |  |
| Элементарные факторы эволюции  |  |

III. Определите правильный ответ в тестовом задании.

Факторы эволюции —...

1 ) популяционные волны; A) 1, 3, 6, 7, 8;
2 ) мутация; B) 2, 4, 5, 7;
3) дрейф генов; C) 3, 4, 6, 8;

- 4) комбинативная изменчивость; D) 1,2, 4, 7; 5 ) популяция; E) 2, 5, 7, 8.
- 6) географическая изоляция;
- 7) биологическая изоляция;
- 8) миграция.
- IV. Дайте определение популяции.
- V. Ответьте на вопросы.
  - 1. От чего зависит площадь ареала популяции?
  - 2. Чем популяция отличается от стада, стаи, колонии?
  - 3. Почему популяции в пределах одного вида не смешиваются?
  - 4. Что установил американский ученый Меллер?
  - 5. Объясните сущность синтетической теории эволюции.
  - 6. Перечислите ее основные положения.

# § 15. СИНТЕТИЧЕСКАЯ ТЕОРИЯ ЭВОЛЮЦИИ

К XX в. началось всестороннее изучение проблем, касающихся наследственности и изменчивости, взаимоотношений организмов в пределах одного и разных видов, структуры вида и др.

Сформировались новые отрасли биологической науки — генетика, экология, молекулярная биология. В результате стыковки классического дарвинизма с этими науками была создана синтетическая теория эволюции.

Основные положения этой теории заключаются в следующем.

- 1. Элементарный материал эволюции мутационная и комбинативная изменчивость.
  - 2. Элементарная единица эволюции популяция.

- 3. Элементарные факторы эволюции популяционные волны, генетико-автоматические процессы, изоляция.
  - 4. Каждый вид состоит из популяций.
- 5. Вид состоит из совокупности подвидов и популяций, относительно различающихся в морфологическом, биохимическом, физиологическом, экологическом, генетическом отношениях и изолированных в половом отношении.
  - 6. Изменения и дрейф генов происходят только в пределах вида.
- 7. Эволюция носит дивергентный характер, т. е. от одного родоначального вида могут образоваться несколько новых видов, в отдельных случаях от одного-единственного вида может возникнуть единственный новый вид.
- 8. Эволюция постепенный долгосрочный процесс, при котором образование видов считается этапом, характеризующимся сменой одних популяций другими.
- 9. Принимая во внимание, что основным критерием вида является половая обособленность, этот критерий нельзя применять к организмам со слабо выраженными половыми признаками.
- 10. Микроэволюция это эволюционный процесс в пределах вида, а макроэволюция эволюционные процессы в таксонах, стояших над видами.

#### Микроэволюция

Говоря об эволюционных процессах в пределах вида, прежде всего необходимо различать такие понятия, как элементарные единица, материал, явление и факторы эволюции.

Популяция — элементарная единица эволюции. Особи одного и того же вида распространены в пределах ареала неравномерно. Одни участки ареала населены редко, а другие — густо. Так, в лесостепях Западной Сибири береза распространена отдельными рощами. Причинами неравномерности распределения особей одного вида в пределах ареала являются различия в природных условиях, сложившихся на разных его участках. Под популяцией понимают совокупность особей одного вида, различающихся отдельными признаками и свойствами, которые, длительно существуя в определенной части ареала, свободно скрещиваются между собой и живут относительно обособленно от других групп организмов того же вида. Популяцию называют элементарной единицей эволюции потому, что она представляет собой наименьшую совокупность особей в пределах вида, которая может самостоятельно вовлекаться в эволюционное развитие. Особи одного вида могут жить также семьями, стадами, стаями. Однако они недолговечны и могут быстро распадаться. Поэтому их нельзя назвать элементарными единицами эволюции. В

зависимости от площади ареала, населенного определенным видом, число популяций в нем может быть различным. В обширном ареале число популяций видов, как правило, больше, в небольшом ареале меньше. А площадь ареала популяции зависит от скорости передвижения животных, а у растений — от расстояния, в пределах которого они могут перекрестно опыляться. Так, виноградная улитка передвигается в радиусе нескольких десятков метров, а северная лиса — в радиусе нескольких сотен километров.

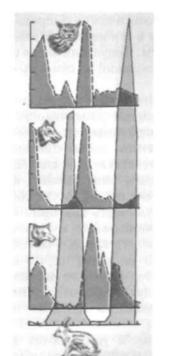
Численность особей в популяциях разных видов также различна. В некоторых популяциях растений и животных, распространенных в открытых местностях, численность особей очень мала. Например, популяция тигра на Дальнем Востоке в настоящее время не превышает 400 особей.

Главный фактор, объединяющий особей в одну популяцию, — это, прежде всего, их свободное скрещивание. Особи одной популяции по своим свойствам и признакам очень близки друг к другу, и поэтому возможность их скрещивания внутри популяции выше, чем между особями соседних популяций. Смешиванию популяций одного вида между собой препятствуют различные барьеры. Различают в основном два их вида: географические и биологические. Определения, характеризующие популяцию, касаются в основном раздельнополых организмов с перекрестным опылением. Популяции видов с бесполым, вегетативным размножением и растений с самоопылением еще недостаточно изучены.

Элементарный материал эволюции. Элементарным материалом эволюции служит мутационная и комбинативная изменчивость. Различают следующие разновидности мутации: генная, хромосомная, геномная и цитоплазматическая. С понятием ген вы ознакомились при изучении основ цитологии и генетики в 9 классе. Увеличение или уменьшение числа нуклеотидов, содержащихся в генах, или их перемещение вызывают изменчивость. Мутации происходят внезапно и случаются редко. Вероятность повторения генных мутаций равняется 106 — 108. Хромосомные мутации связаны с уменьшением или увеличением отдельных частей хромосом, их перемещением. Если принять во внимание то, что в каждой хромосоме содержится несколько сотен генов, то можно ожидать, что хромосомные мутации приведут к значительным изменениям. Геномные мутации по сравнению с генными и хромосомными происходят очень редко.

Большинство мутаций являются вредными и устраняются в процессе естественного отбора. Отдельные мутации в данных конкретных условиях могут быть полезными для организма. В таких случаях они передаются последующим поколениям, и в результате размножения организмов постепенно растет их число. Любой

отдельно взятый организм, даже обладающий полезной мутацией, никогда не может эволюционировать самостоятельно.


Элементарное явление эволюции. Мутационная изменчивость и естественный отбор в течение длительного времени могут привести к изменению соотношения организмов с разными генотипами в популяции, другими словами, вызвать изменения в генофонде популяции. Изменения генофонда популяции есть первый шаг в сторону эволюционного процесса.

А как можно узнать, произошли или нет изменения в генофонде популяции? Обычно путем подсчета в нескольких поколениях различных организмов с признаками, обусловленными действиями того или иного гена из генофонда популяции, определяют число повторений их в каждом поколении и, сравнивая их соотношение, судят о наличии или отсутствии изменений генофонда. В 1928—1929 гг. американский генетик Г. Меллер разработал методы определения рецессивных летальных мутаций и доказал возможность изучения таких мутаций опытным путем. Длительно протекающие в определенном направлении изменения генофонда популяции назы-

ваются элементарными явлениями эво-люции.

Элементарные факторы эволюции. Дрейф генов. В малых популяциях особи, содержащие мутантные аллели, могут подвергаться быстрым и внезапным изменениям. Например, Райт, проводивший наблюдения за потомством двух пар гетерозиготных по гену А самцов и самок дрозофилы, помещенных в пробирки с различным кормом, обнаружил, что через несколько поколений в одной популяции были только мутантные гомозиготные формы, а в составе другой популяции они вообще не встречались. А в третьей популяции наблюдались и доминантные, и рецессивные аллельные формы. Случайные изменения генов в составе генофонда популяции называются дрейфом генов.

Популяционные волны. Из собственных наблюдений вам известно, что в годы с благоприятными погодными условиями число некоторых организмов резко увеличивается, а в годы, когда эти условия неблагоприятные, оно резко сокращается. Такое явление касается особей любой



1932 1940 1948 1954 годы Рис. 42. Популяционные волны.

популяции. Так, в годы с обильными весенними осадками однолетние и многолетние растения — подснежник, костер кровельный, мятлик луковичный, одуванчик, паслен — усиленно растут и обильно плодоносят. Это может способствовать также увеличению особей насекомоядных и травоядных животных. Возрастание численности насекомоядных и травоядных животных приводит, в свою очередь, к увеличению численности насекомоядных птиц и хищных животных. Заметное увеличение или резкое сокращение численности организмов популяции называется популяционной волной (рис. 42).

Частое повторение таких явлений в конечном итоге приводит к изменению генофонда популяции.

**Изоляция.** В свое время Дарвин утверждал, что изоляция является важным эволюционным фактором, так как она приводит к

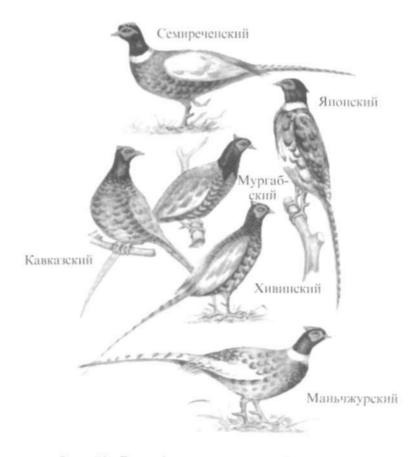



Рис. 43. Географическая изоляция. Подвиды фазана.

распределению признаков в пределах вида и препятствует скрещиванию особей между собой. Различают несколько видов изоляции организмов.

*Географическая изоляция* происходит из-за крупных рек, высоких гор и других препятствий (рис. 43).

*Биологическая изоляция* обусловливает нескрещиваемость особей внутри вида.

Экологическая изоляция связана с различными сроками половой активности и полового созревания у особей в пределах вида.

Этологическая изоляция связана с поведением животных. Например, некоторые птицы отличаются способом привлечения самки своеобразным пением.

Различные формы изоляции в течение длительного времени препятствуют свободному скрещиванию особей с разными аллелями. Это, в свою очередь, приводит к появлению различных изолированных групп особей, новых популяций. В отличие от естественного отбора, вышеуказанные элементарные факторы эволюции лишены определенной направленности.

#### Выводы

- 1. Представления об окружающей природе, о многообразии и происхождении растений, животных и других живых существ возникли у людей за несколько тысяч лет до нашей эры. Среди них важное место занимали взгляды ученых-естествоиспытателей Древнего Востока, Древней Греции, Центральной Азии и Европы. Теория об эволюции органического мира впервые была создана французским ученым Ж. Б. Ламарком. Однако он не смог точно объяснить движущие силы эволюционного процесса.
- 2. Дарвин не только доказал изменение органического мира, но и первым в истории науки дал научно обоснованное объяснение происхождения приспособленности организмов. Он указал, что движущими силами эволюции являются изменчивость, наследственность, борьба за существование и естественный отбор.
- 3. Во времена Дарвина некоторые отрасли биологической науки еще не были развиты. В связи с этим впоследствии благодаря достижениям генетики, экологии и других наук эволюционная теория получила новое толкование. В результате была создана синтетическая теория эволюции, которая позволила всесторонне объяснить возможности возникновения в природе новых видов.
- 4. В настоящее время теория эволюции органического мира условно подразделяется на микроэволюцию и макроэволюцию.
- 5. Микроэволюция это эволюционный процесс, протекающий в пределах вида. В этом процессе важную роль играют элементарный

эволюционный материал — мутационная и комбинативная изменчивость, элементарная единица эволюции — популяция, элементарное явление эволюции — мутационный процесс, элементарные факторы эволюции — изоляция, миграция, популяционные волны, дрейф генов, естественный отбор.

- 6. В природе наблюдается аллопатрическое, симпатрическое, гибридогенное и филетическое видообразование.
- 7. Все виды растений, животных и других организмов приспособлены к условиям среды обитания. Такая приспособленность возникла в историческом процессе в результате борьбы за существование и естественного отбора. Однако любые приспособления организмов являются не абсолютными, а относительными.

#### Словарь терминов

Аллопатрия (от *греч*. alios — другой + patris — родина) — возникновение новых популяций на окраинных участках ареала вида.

Анатомия (от *греч*. anatome — рассечение) — наука о строении органов и целого организма.

Антибиотик (от *греч*. and — против + bios — жизнь) — вещество, убивающее микроорганизмы, и л и препятствующее их развитию.

Архипелаг (от *греч*. archi — руководство + pelagos — море) — группа или совокупность островов, близко расположенных друг к другу.

Археология (от *греч*. archaios — древний + logos — учение) — наука, изучающая оставшиеся от древних людей материальные источники и жилища, предметы быта, орудия, письменность и др.

Биология (от *греч*. bios — жизнь + logos — учение) — наука о жизни.

 $\Gamma$  е н о ф о н д (от *греч*. genos — потомство + *франц*. f о n d — база) — совокупность генов организмов, входящих в состав популяции.

Дивергенция — расхождение признаков и свойств организмов, произош е д ш и х от одного рода, в процессе эволюции.

Дизруптивный отбор — форма естественного отбора, приводящая к образованию ряда полиморфных форм, отличающихся друг от друга в пределах одной популяции.

Дрейф генов — изменения в генетическом строении популяции под влиянием случайных причин — генетико-автоматический процесс.

Индивид (от nam. individuum — неделимый) — элементарная неделимая единица жизни. С эволюционной точки зрения это организмы, развившиеся из одной зиготы, споры.

Классификация (от nam. K1 a s s i s — разряд + fasere — делать) — подразделение всех живых организмов по их признакам и свойствам на большие и малые систематические группы.

Корреляция (от *лат*. correlatio — взаимосвязь) — изменение одной части тела, обусловленное изменением другой части. Коррелятивные органы —

это органы, взаимно связанные между собой. Изменение одного органа приводит к изменению и другого органа тела.

Маскировка — форма и окраска тела животных, напоминающая окружающие их листья, ветви, почки растений и зашишающая их от врагов.

Микроэволюция (от *греч*. mikros — малый + *лат*. evolutio — развертывание) — эволюционный процесс в пределах вида.

Мимикрия (от *англ.* mimicry — подражательность) — имитирование цвета и формы хорошо защищенных, мало истребляемых животных некоторыми беззащитными и съедобными животными.

Онтогенез (от *греч*. ontos — сущее + genesis — происхождение) — индивидуальное развитие.

Палеонтология (от *греч*. palaios — древний, ontos — сущее + logos — учение, наука) — наука об ископаемых организмах.

Политипичность (от *греч*. poly — много + typos — экземпляр) — существование различных типов организмов, относящихся к одному виду.

Полиплоидия (от *греч*. polyploos — многократный + eidos — вид) — кратное увеличение числа хромосом в ядре клетки.

Радиус (от *nam*. radius) — прямая линия, соединяющая любую точку окружности с ее центром.

Родословная — перечень поколений одного рода, устанавливающий происхождение и степень родства.

Селекция (от nam. selectio — отбор) — создание новых сортов, пород, штаммов путем отбора.

Симпатрическое направление — совместное проживание различающихся в генетическом отношении организмов одного вида в одной географической среде.

Стабилизирующий отбор (от *лат*. stabilis — постоянство, устойчивость) — передача из поколения в поколение признаков и свойств, присущих виду при неизменных условиях среды обитания.

Систематика (от *греч*. sistematikos — упорядоченный) — отрасль биологии, разделяющая организмы на различные систематические категории по их родственным связям.

# Глава III

# ДОКАЗАТЕЛЬСТВА ЭВОЛЮЦИИ

В настоящей главе приводятся научно обоснованные цитологические, молекулярно-биологические, эмбриологические, сравнительно-анатомические, палеонтологические, биогеографические
доказательства эволюции. Усвоение этих знаний тесно связано со
знанием строения и функций клетки, нуклеиновых кислот, белков,
биогенетического закона, гомологичных, аналогичных, рудиментарных органов, явлений атавизма, с понятиями об эрах, способах
определения их возраста, с теорией происхождения континентов. Все
это поможет вам понять макроэволюцию. В полемике с людьми,
отрицающими эволюцию органического мира, вы можете использовать эти научные доказательства.

#### Макроэволюция и ее доказательства

В связи с тем, что процессы, протекающие в пределах вида, в большинстве случаев являются краткосрочными, их можно изучать напрямую. Так как макроэволюция, т. е. эволюционные процессы во всех систематических единицах, кроме вида: родах, семействах, отрядах, классах, типах — совершалась на протяжении миллионов лет, ее невозможно проследить непосредственным образом. Поэтому доказательства макроэволюции основываются на сравнительном изучении внешнего и внутреннего строения, развития и жизненных процессов современных представителей древних вымерших видов. Несмотря на это, макроэволюция является органическим продолжением микроэволюции, так как явления, происходящие в микроэволюции, например, мутационная и комбинативная изменчивость, генетическое и экологическое разнообразие популяций, элементарные факторы эволюции, имеют место и в макроэволюции.

# Задания

- I. Прочитайте текст § 16.
- II. Заполните следующие таблицы.

Таблица 15

| 1 n/n | Макромолекулы | Животные | Растения |  |
|-------|---------------|----------|----------|--|
| 1     |               |          |          |  |
| 2     |               |          |          |  |
| 3     |               |          |          |  |

#### Таблица 16

#### Свойства, присущие растительной и животной клетке

| ¹ n/n | Растения | Животные |
|-------|----------|----------|
| 1     |          |          |
| 2     |          |          |
| 3     |          |          |
| 4     |          |          |
| 5     | -        |          |
| 6     |          |          |
| 7     |          |          |
| 8     |          |          |
| 9     |          |          |

#### Таблица 17

#### Специфические свойства растений

| 1 |  |   |      |  |
|---|--|---|------|--|
| 2 |  |   |      |  |
| 3 |  |   | <br> |  |
| 4 |  | , |      |  |

#### III. Ответьте на вопросы.

- 1. Докажите происхождение органического мира от одного предка.
- 2. Как определяется изменение молекулы белка в историческом процессе?
- 3. Что изменяется быстрей: молекула белка или ген? Обоснуйте свое мнение.
- 4. Расскажите о разновидностях изменений гена.
- Всегда ли изменение гена обусловливает изменения молекулы белка? Почему?
- 6. Можно ли определить сроки изменения видов по изменению молекулы белка?

#### § 16. МОЛЕКУЛЯРНО-БИОЛОГИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА ЭВОЛЮЦИИ

Молекулярная биология. Любая клетка состоит из определенного количества органических соединений. В строении клетки и в обеспечении энергией протекающих в ней процессов основную роль играют белки, нуклеиновые кислоты, полисахариды, липиды. Особое место в жизни клеток занимают макромолекулы белков и нуклеиновых кислот. Белки, прежде всего, являются строительным и пластическим материалом клетки, а нуклеиновые кислоты — носителями наследственной информации.

Для определения изменений, происходящих в макромолекулах близких по происхождению и далеких видов в определенный период исторического развития, используется ряд биохимических методов: гибридизация макромолекул ДНК, определение последовательности расположения аминокислот в молекуле белка (гемоглобина, миоглобина, цитохрома) и др.

На современном этапе развития молекулярной биологии можно анализировать изменения в последовательности нуклеотидов в ДНК или аминокислот в молекуле белка разных видов и по этому показателю судить о степени их сходства и различия. Поскольку каждая замена аминокислот в молекуле белка связана с изменением одного, двух или трех нуклеотидов в молекуле ДНК, с помощью ЭВМ можно вычислить максимальное или минимальное число нуклеотидных замен в составе гена, участвующего в синтезе данной молекулы белка.

На основе полученных данных можно судить о среднем числе замещений аминокислот в молекуле белка и изменениях в расположении нуклеотидов в составе гена. Вы знаете, что гемоглобин входит в состав красных кровяных телец — эритроцитов и активно участвует в транспорте кислорода. Гемоглобин в эритроцитах человека состоит из взаимно схожих двух а- и двух р-цепей. В каждую цепь а входит 141, в каждую цепь р — 145 аминокислот. Несмотря на взаимные различия а- и р-цепей гемоглобина, последовательность расположения аминокислот в них одинакова. Это свидетельствует о том, что цепи а и р гемоглобина возникли в результате дивергенции единой полипептидной цепи в историческом процессе. В результате мутационных изменений в различных группах животных замещение аминокислот происходило также в а- и р-цепях гемоглобина.

Как видно из данных табл. 18, молекулы гемоглобина у человека и человекообразных обезьян почти схожи по последовательности аминокислот, однако различия между человеком и другими отрядами млекопитающих животных по этому показателю весьма существенны и составляют от 14 до 33. Такие же данные получены при сопоставлении аминокислотного состава белка цитохрома С человека, дрозофилы и других организмов (табл. 19).

Таблица 18

#### Различия аминокислотного состава в α- и β-цепях молекулы гемоглобина у человека и других животных (по V. Grant)

| Вал                | Чнело различий |        |  |
|--------------------|----------------|--------|--|
| <b>ДНД</b>         | α-цепь         | β-цеп⊾ |  |
| Человек — шимпанзе | 0              | 0      |  |
| Человек — горилла  | 1              | 1      |  |
| Человек — лошадь   | 18             | 25     |  |
| Человек — коза     | 20—21          | 28—33  |  |
| Человек — мышь     | 16—19          | 25     |  |
| Человек — кролик   | 25             | 14     |  |

Таблица 19

#### Число различий в аминокислотном составе белка цитохрома С человека и двугих организмов (по V. Grant)

| Вид                  | Число различий |
|----------------------|----------------|
| Человек — макака     | ı              |
| Человек — лошадь     | 12             |
| Человек — собака     | 11             |
| . Человек — голубь   | 12             |
| Человек — змея       | 14             |
| Человек — лягушка    | 18             |
| Человек — акула      | 24             |
| Человек — дрозофила  | 29             |
| Человек — пшеница    | 43             |
| Человек — нейроспора | 48             |

Если скорость эволюции белка измеряется числом аминокислотных замен в год, то скорость эволюции генов измеряется путем определения нуклеотидных замещений. Однако нуклеотидные замены в составе генов не всегда обусловливают аминокислотную замену в составе белка. Об этом свидетельствует тот факт, что из 20 аминокислот, входящих в состав белка, 18 кодируются 2, 3, 4 и 6 кодами.

Каждый нуклеотид в составе гена может подвергаться мутации. Ее называют *точечной мутацией*. Некоторые нуклеотиды поразному реагируют на воздействие извне. В некоторых нуклеотидных парах мутация происходит всего один или два раза, у

других число мутаций может достигать нескольких сотен. Последние называются *«горячими»* точками.

Очень важно и то, какой нуклеотид претерпевает изменения при мутации. Например, фенилаланин обладает кодоном U U U. Если третий нуклеотид этого кодона урацил заменяется аденином или гуанином, то положение кодона изменяется и кодоны UUA и UUG включают в полипептидную цепь не фенилаланин, а лейцин, что приводит к существенному изменению структуры и функции молекулы белка. Обычно у близких друг к другу в систематическом отношении видов число мутаций невелико и, наоборот, у видов, далеких друг от друга, — велико. Поэтому, например, ДНК человека оказалась гомологичной ДНК макаки на 66%, быка — на 28%, крысы — на 17%, лосося — на 8%, бактерии кишечной палочки — всего на 2%.

Молекулярные часы эволюции. Обычно, определяя дивергенцию белков у нескольких видов, можно судить о сроках расхождений между ними. Скорость эволюции белка измеряется числом годичных аминокислотных замен в его составе. По аминокислотным заменам в составе белка можно определить момент дивергенции рода, семейства, отряда, класса, типа. Например, в результате изучения родословной белка глобина (3 установлено, что его строение было схожим у общих предков карпа и человека, существовавших около 400 млн лет назад, ехидны и человека — 225 млн лет назад, собаки и человека — 70 млн лет назад.

#### Задания

- 1. Прочитайте текст § 17. Внимательно изучите содержание рис. 44-47.
- С помощью следующих понятий объясните сущность бногенетического закона и укажите его авторов.



- ІІІ. Дайте характеристику:
  - 1)аналогичных органов;
  - 2) гомологичных органов;
  - 3) рудиментарных органов;
  - 4) явлений атавизма.
- IV. Ответьте на вопросы.
  - 1. Объясните значение терминов «дивергенция» и «конвергенция».
  - 2. Объясните эволюционное значение развития с метаморфозом и без него.
  - 3. Объясните значение явлений атавизма и рудиментарных органов.
  - 4. Объясните значение термина «палеонтология».
  - 5. Почему остатки многих организмов, живших в древних эрах и периодах, не сохранились до настоящего времени?
- V. Определите правильные ответы в тестовых заданиях.
- 1. Примером чего могут служить рождение зеброобразных жеребят и наличие третьей пары сосков в вымени коров?
  - А) аналогичных органов;
  - В) гомологичных органов;
  - С) конвергенции;
  - D) явлений атавизма;
  - Е) рудиментарных органов.
  - 2. Кто является автором теории филэмбриогенеза?
  - А) Э. Геккель;
  - В) А. Северцов;
  - С) Ф. Мюллер;
  - D) Ч. Дарвин;
  - Е) И. Сеченов.

# § 17. ЭМБРИОЛОГИЧЕСКИЕ, СРАВНИТЕЛЬНО-АНАТОМИЧЕСКИЕ И ПАЛЕОНТОЛОГИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА ЭВОЛЮЦИИ

Эмбриология. Растения, животные, тело человека состоят из клеток. Такое сходство в строении тела всех живых существ является доказательством того, что все они произошли от одного предка. Наличие в клетках растений, животных и человека мембраны, цитоплазмы, ядра, цитоплазматических органоидов: эндоплазматической сети, рибосом, митохондрий, аппарата Гольджи, общность генетического кода у всех живых существ также свидетельствуют о единстве происхождения различных представителей органического мира. Индивидуальное развитие всех многоклеточных животных начинается с оплодотворенной яйцеклетки — зиготы. При этом наблюдается деление зиготы, формирование двух- и трехслойного зародыша, из зародышевых листков образование различных органов. При сравнении эмбрионального развития бросается в глаза сходство

ранних этапов индивидуального развития у животных, относящихся к одному типу или классу. Так, у представителей позвоночных (рыб, земноводных, пресмыкающихся, птиц, млекопитающих) на ранних этапах эмбрионального развития голова, тело, хвост, жаберные щели очень похожи. По мере развития зародыша сходство между эмбрионами животных различных классов уменьшается. У них начинают появляться признаки и свойства, присущие определенному классу, отряду, семейству, роду и виду.

Так, зародыши гориллы и человека вначале очень похожи друг на друга, однако на последующих стадиях эмбрионального развития у зародыша человека наблюдается выпячивание лобных, а у зародыша гориллы — челюстных костей. Следовательно, у зародышей каждого животного на ранних стадиях эмбрионального развития появляются признаки, присущие крупной систематической группе, а на последующих этапах — более мелкой. Другими словами, в период эмбрионального развития происходит расхождение признаков от общего к частному (рис. 44).

#### Биогенетический закон

Приведенные выше факты свидетельствуют о том, что каждая особь в своем индивидуальном развитии — в онтогенезе — вкратце повторяет историю развития своих предков. Краткое повторение филогенеза в онтогенезе называется биогенетическим законом. Этот

закон был открыт во второй половине XIX в. немецкими учеными Э. Геккелем и Ф. Мюллером. Биогенетический закон находит отражение в развитии многих представителей животного мира. Так, головастик повторяет стадию развития рыб, которые являются предками земноводных. Биогенетический закон справедлив также и по отношению к растениям. Например, у всходов культурных сортов хлопчатника появляются сначала целостные пластиночные листья, из которых затем развиваются двух-, трех-, четырех-, пятилопастные листья. У диких видов хлопчатника G. raimondii и G. klotzschianum листья на стебле представляют собой цельную пластину.

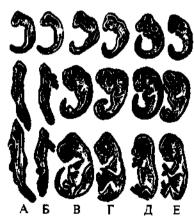



Рис. 44. Эмбриональное развитие организмов, принадлежащих к различным классам позвоночных: A — рыба; E — саламандра; B — черепаха; F — птица;  $\mathcal{I}$  — заяц; E — человек.

Следовательно, культурные сорта хлопчатника в процессе своего индивидуального развития вкратце повторяют историческое развитие своих предков. Однако в процессе индивидуального развития повторяются не все, а только некоторые этапы исторического развития предков, остальные же выпадают. Это объясняется тем, что историческое развитие предков длится миллионы лет, а индивидуальное развитие — непродолжительное время. Кроме того, в онтогенезе повторяются не стадии взрослых форм предков, а их эмбриональные этапы развития.

Естественно, возникает вопрос: если филогенез оказывает влияние на онтогенез, то не может ли онтогенез оказать влияние на филогенез? Следует подчеркнуть, что в онтогенезе не только выпадают некоторые этапы развития предков, но и происходят изменения, не наблюдавшиеся в филогенезе. Это доказал русский ученый А. Н. Северцов своей теорией филэмбриогенеза. Известно, что мутационная изменчивость происходит на разных этапах эмбрионального развития особи. Организмы с полезными мутациями выживают в борьбе за существование и естественном отборе, передавая полезные мутации из поколения в поколение, и в конце концов изменяют ход филогенеза. Например, у пресмыкающихся клетки эпителия кожи, а под ним и соединительной ткани, развиваясь, образуют чешуйки. А у млекопитающих производные эпителиальной и соединительной ткани, изменяясь, образуют под кожей волосяной мешок.

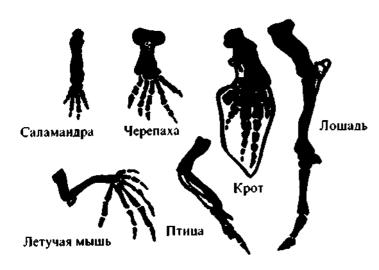



Рис. 45. Гомологичные органы (передние конечности позвоночных животных).

Р и с. 46. Аналогичные органы; — иглы барбариса; 2 — иглы боярышника; 3 — шипы белой акации (боковые листья); 4 — шипы малины (ростки кожицы); 5 — крылья бабочки (развиваются из задней части грудного отдела тела); 6 — крылья орла; 7 — летательные перепонки летучей мыши (образованы путем видоизменения передней конечности).



**Сравнительная анатомия.** Важным доказательством макроэволюции являются наличие у организмов гомологичных, аналогичных, рудиментарных органов, а также явления атавизма.

Гомологичные органы. Органы, имеющие сходное строение и общее происхождение, независимо от выполняемых ими функций, называются гомологичными. Например, у представителей позвоночных, обитающих на суше, в воздухе и в воде, передние конечности выполняют функции хождения, копательную, летательную, плавательную. Однако у всех они состоят из плеча, предплечья, образованного локтевой и лучевой костями, костями запястья (рис. 45). Гомологичные органы встречаются также и у растений. Например, усики гороха, шипы барбариса и кактуса являются видоизмененными листьями.

Аналогичными называют такие органы, которые выполняют одинаковые функции, но имеют различное происхождение. Колючки кактуса образовались в результате видоизменения листьев, шипы боярышника — стебля, а шипы розы и малины — вследствие изменения ростков эпидермиса (рис. 46). Примерами аналогичных органов являются также глаза головоногих моллюсков и позвоночных животных. Глаза у головоногих моллюсков развиваются путем удлинения эктодермального слоя, а у позвоночных — из бокового ростка головного мозга.

В отдельных случаях эволюционный процесс совершается в результате приспособления организмов, относящихся к различным систематическим группам, к одинаковым условиям обитания в течение миллионов лет. Такой процесс называется конвергенцией — сходством признаков. В качестве примера конвергенции можно привести сходство строения тела, органов движения акулы (рыбы), ихтиозавра (пресмыкающиеся, жившие в мезозойской эре и затем

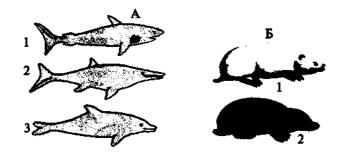



Рис. 47. Конвергенция животных, принадлежащих к различным систематическим группам позвоночных: A — водные животные: I — акула; 2 — ихтиозавр; 3 — дельфин; B — обитатели суши: I — сумчатый крот; 2 — обыкновенный крот.

вымершие), дельфина (млекопитающие). Сходство внешнего' вида представителей подкласса сумчатых и плацентарных из класса млекопитающих — сумчатого крота и крота обыкновенного — также является результатом конвергенции (рис. 47).

Рудиментарные органы и явления атавизма. Органы, утратившие в течение эволюционного процесса свое первоначальное значение и находящиеся на стадии исчезновения, называются рудиментарными. У древних предков эти органы были нормально развиты и выполняли определенные функции. Затем, в ходе эволюционного процесса, они потеряли свое биологическое значение и сохранились в виде остаточных органов. Рудиментарные органы встречаются как у животных, так и у растений. Так, чешуйки у корневища ландышей, пырея, папоротника и комнатного растения аспидистры являются рудиментарными листьями. Вторые и третьи пальцы конечностей лошади, крестцовая кость и кости конечности кита, маленькая пара крыльев у мухи также являются рудиментарными органами. Рудиментарные органы у растений, животных и человека являются важным доказательством эволюции.

Явления атавизма также подтверждают историческое развитие органического мира. Под *атавизмом* понимают повторение у отдельных особей в онтогенезе признаков, характерных для их далеких предков. Примером этого являются случаи рождения зеброобразных жеребят, наличие нечетких полос на спине пегой лошади. Это свидетельствует о том, что дикие предки домашней лошади имели полосатый шерстяной покров. Иногда у коров бывает три пары сосков на вымени. Это указывает на то, что коровы произошли от диких предков, имевших четыре пары сосков.

Палеонтология — наука об ископаемых растениях, животных, грибах и других организмах. Палеонтология предоставляет ценные данные для доказательства исторического развития органического мира. Данные, накопленные биологической наукой, свидетельствуют о том, что органический мир в современном виде появился не сразу, а в результате длительного исторического развития. Растения, животные и грибы жили задолго до появления человека на Земле. Некоторые из них, подвергаясь изменениям, превратились в современных представителей органического мира, но подавляющее большинство вымерли в ходе борьбы за существование, естественного отбора и сохранились в виде ископаемых остатков. Но сохранились не все. Большинство мягкотелых беспозвоночных растений и грибов после гибели подверглись разложению микроорганизмами и бесследно исчезли. Остальные сохранились в океанах, морях, в высокогорных отложениях. Твердые остатки организмов разлагались медленно, и минеральные вещества в их составе замещались кремнеземом. В таких случаях образовывались окаменелости. В земных отложениях до сегодняшнего дня сохранились следы, скелеты, кости, челюсти, зубы, рога, чешуйки рыб, раковины моллюсков, панцири давно вымерших животных, а также стебли древних растений в довольно целостном состоянии. При микроскопическом исследовании тонких и прозрачных шлифов из осадочных пород можно обнаружить бактерии и остатки других мелких организмов.

Ученые-палеонтологи по ископаемым остаткам животных восстанавливают внешний вид и строение организмов. При этом используется метод реконструкции (от лат. reconstructio — восстановление), открытый известным французским биологом Жоржем Кювье согласно закону корреляции. Метод реконструкции основан на определении сравнительного соотношения черепа, костей конечностей и других костей и мышц тела. С помощью этого метода удалось восстановить внешний облик очень многих живших в древние времена животных, предков человека. Ч. Дарвин в свое время указывал на неполноту палеонтологической летописи. Тем не менее факты, накопленные палеонтологической наукой, дают представление о том, каким был растительный и животный мир в глубокой древности (рис. 48).

## Задания

- 1. Рассмотрите схемы A и B. Объясните, в какой из схем правильно отражены родственные и э в о л ю ц и о н н ы е отношения древних и современных рыб и земноводных.
  - 2. Докажите ошибочность д р у г о й схемы.

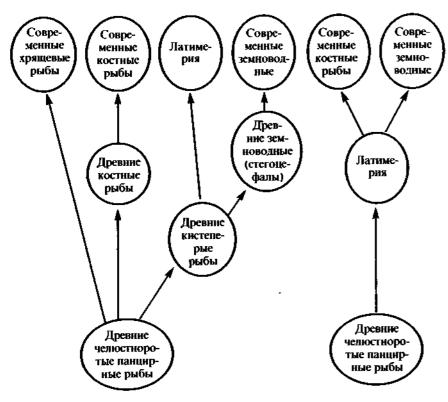



Рис. 48. Схема определения промежуточных форм древних и современных животных. На более темном фоне — вымершие виды.

# Задания

I. Прочитайте текст § 18. Изучите животный мир, и з о б р а ж е н н ы й на рис. 49—51.

## II. Ответьте на вопросы.

- 1. Сравните Австралийскую и Неотропическую биогеографические области и определите в н и х группы сходных животных.
- 2. Почему Палеоарктическая и Неоарктическая биогеографические области во многом сходны м е ж д у собой?
- 3. Какие группы животных и растений принимались во внимание при разделении с у ш и на биогеографические области?
- 4. Почему человекообразные обезьяны распространены только в двух биогеографических областях?
- 5. Чем объясняется распространение опоссумов в Центральной и Южной Америке?

#### **III.** Подумайте.

1. Как вы относитесь к теории А. Вегенера о возникновении континентов?

- 2. Какой была бы, по вашему мнению, судьба яйцекладущих и сумчатых животных, е с л и бы в третичном периоде кайнозойской э р ы Австралия и окружающие ее острова не отделились от Гондваны?
- IV. Определите правильные ответы в тестовых заданиях.
  - 1. Биогеографические области, в которых распространены человекообразные обезьяны, ...
    - А) Палеоарктическая, Индомалайская;
    - В) Неоарктическая, Эфиопская;
    - С) Неотропическая, Австралийская;
  - D) Индомалайская, Неоарктическая;
  - Е) Эфиопская, Индомалайская.
  - 2. Биогеографические области, в которых распространены яйцекладущие млекопитающие животные, —...
    - А) Неоарктическая; В) Австралийская; С) Неотропическая;
    - D) Эфиопская;E) Индомалайская.
  - 3. Биогеографические области, в которых распространены сумчатые млекопитающие животные, ...
    - А) Палеоарктическая, Индомалайская;
    - В) Неоарктическая, Эфиопская; С) Неотропическая, Австралийская;
    - D) Индомалайская, Неоарктическая; E) Эфиопская, Индомалайская.

# § 18. БИОГЕОГРАФИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА ЭВОЛЮЦИИ

Животный и растительный мир, распространенный на земном шаре, является неоднородным по сложности строения и функций. На некоторых континентах распространены относительно простые, а на других — крайне сложные животные и растения.

По распространению животных и растений на суше ученые разделили нашу планету на шесть биогеографических областей. В основе такого разделения лежит главным образом распространение млекопитающих, птиц, голосеменных, покрытосеменных растений, частично пресмыкающихся, земноводных, а также споровых растений, произрастающих на суше. Ниже вы ознакомитесь с животными и растениями выделенных учеными биогеографических областей: Австралийской, Неотропической, Индомалайской, Эфиопской, Неоарктической и Палеоарктической.

В Австралийскую биогеографическую область входят, кроме Австралии, острова Новой Зеландии, Новой Гвинеи, Полинезии и Тасмании. В этой области распространены не встречающиеся в других биогеографических областях низшие представители класса млекопитающих — яйцекладущие утконос, ехидна, из сумчатых животных — кенгуру, сумчатый крот, сумчатая белка, сумчатый волк, сумчатый медведь (рис. 49).



Рис. 49. Животный мир Л не і ра. m і і с к о іт опоіеоі рафической области. Рыбы: / длинноносая бабочковидная рыба; 2 большой фяпичник. Пресмыкающиеся: 3 гигантский варан; 4 австралийская змеиношейная черепаха: 5 гаттерия гуаттара. Птицы: 6 попугай какаду;  $^{7}$  красная райская птица;  $^{8}$  страус казуар;  $^{9}$  розовый какаду;  $^{10}$  страус  $^{10}$  пятнистый попугай;  $^{12}$  большая киви;  $^{13}$  шалашник хохлатый садовник. Млекопитающие:  $^{14}$  утконос;  $^{14}$  проехи.ша:  $^{16}$  ехидна:/" гагантекая сумчатая летяга;  $^{19}$  серый исполинский кенгуру.



Рис. 50. Животный мир Неотропической (Южноамериканской) биогеографической области. Рыбы: / сарган (морской клоун): 2 рыба-луна. Пресмыкающиеся: 3 (еленая игуана;-/ земляная игуана. Птицы: 5 колибри; 6 попугай ара; 7 андский кондор; 8 страус нанду; у Магелланов пингвин. Млекопитающие; /" водяной опоссум; // обыкновенный вампир; 12 грехлалый ленивец; 13 гигантский муравьед; 14 рыжий ревун; 15 гапир; 16 ламавикунья; 17 морской котик; 18 шиншилла; 19 водяная свинья.

Плацентарные млекопитающие очень малочисленны. Они представлены мышеобразными грызунами, летучими мышами, собакой динго, из которых два последних вида предположительно попали сюда с других континентов. Весьма разнообразный мир птиц Австралии представлен райскими птицами, обыкновенными шалашниками, птицей Лира, бескрылой киви-киви, из страусов — эму. Из пресмыкающихся встречается новозеландская гаттерия, очень похожая по строению на пресмыкающихся палеозойской эры. В лесах можно встретить эвкалипты, южную черную березу, древовидные папоротники.

Неотропическая биогеографическая область охватывает Южную и Центральную Америку, тропическую часть Мексики, Карибский архипелаг. В этой области из млекопитающих встречаются крючкохвостая обезьяна, крючкохвостый медведь, пампасская кошка, скунс, морская свинья, южноамериканская лисица, из низших представителей — опоссум, броненосцы, муравьед, ленивец, из птиц — колибри, сова, гриф, страус нанду, из пресмыкающихся — аллигаторы, ящерицы-игуаны, древесные змеи (рис. 50). Из растений встречаются представители семейств молочайных, пасленовых, кактусовых, бобовых, миртовых и др.

В Индомалайскую биогеографическую область входят Индия, Индокитай, острова Цейлон, Ява, Суматра, Борнео, Тайвань, Филиппины. На всех островах очень много лесов. Только западная часть Индии занята пустынной зоной. Среди животных бросаются в глаза человекообразные обезьяны — орангутанг, гиббон, полуобезьяны — тупаи, долгопятные, индийский слон, тигр, бамбуковый медведь, олени, антилопы, тапир, носороги, из птиц — дикие банкивские курицы, фазаны, попугаи, павлины, из пресмыкающихся — ядовитые змеи, различные ящерицы, крокодилы. В лесах растут бамбук, банан, черное дерево и другие растения.

Эфиопская биогеографическая область занимает Центральную и Южную Африку, Мадагаскар. Своеобразный животный мир этой области представляют человекообразные обезьяны — гориллы, шимпанзе, мартышки, лемуры, львы, слоны, бегемоты, белый и черный двурогий носороги, жирафы, зебры, гиены и другие животные, большинство из которых не встречается в других биогеографических областях. Из птиц широко распространены африканский страус, птица-секретарь, попугаи, цесарки, нектарницы, из пресмыкающихся — африканский крокодил, варан, ящерицы агамы, хамелеоны (рис. 51). Западные и горные территории Африки заняты тропическими лесами, остальные — саваннами. В них широко распространены баобаб, красное дерево, пальмы, акации, папоротники и растения, растущие на деревьях, — эпифиты.



Рис. 51. Животный мир Эфиопской биогеографической области (Африка). Рыбы: 1 — усач миндано. Пресмыкающиеся: 2 — нильский крокодил. Птицы: 3 — африканский страус; 4 — венценосный журавль; 5 — птица-секретарь. Млекопитающие: 6 — африканский слон; 7 — белый носорог; 8 — черный носорог; 9 — бегемот; 10 — жираф; 11 — лошадиная антилопа; 12 — кафрский буйвол; 13 — канна; 14 — лемур; 15 — ай-ай; 16 — зеленая мартышка; 17 — горилла; 18 — шимпанзе; 19 — лев; 20 — барс.

Палеоарктическая биогеографическая область занимает обширные территории Европы, Северной и Центральной Азии и Северной Африки. Несмотря на обширность территории, в этой области нет ни одного отряда млекопитающих, который не встречался бы в других областях. Из парнокопытных здесь обитают лошади, сайгаки, косули, кабарга, горные козлы, лоси, дикие бараны, двугорбые верблюды, горные олени, из хищников — белые и бурые медведи, волки, лисицы, бобры, из насекомоядных — выхухоль, из рукокрылых — летучие мыши, из птиц — горные индейки, глухари, фазаны, синицы. Из растений произрастают хвойные — можжевельник, пихта, ель, сосна, из покрытосеменных — дуб, тополь, ива, акация, гледичия, маревые, крестоцветные, зонтичные, сложноцветные, зерновые и многие другие травянистые растения.

В Неоарктическую биогеографическую область входят Северная Америка, Гренландия, Бермудские и Алеутские острова. К своеобразным животным Неоарктической биогеографической области можно отнести винторогого оленя, горного козла, барса, мускусного барана, короткохвостую вонючку, енота, древесного дикобраза. Животный мир этой области во многом сходен с таковым Палеоарктической области. И там, и тут живут бобры, олени, лоси, лисицы, соболя, белые медведи, белые мыши, белые зайцы, кроты, рыси.

Европейский зубр соответствует североамериканскому бизону, сибирский олень марал — американскому оленю капити, европейский дикий баран муфлон — американскому горному барану. Растения этой области также напоминают растения Палеоарктической биогеографической области. В лесах распространены пихта, ель, другие хвойные растения, из покрытосеменных — дуб, бук, клен, другие травянистые растения, относящиеся к различным семействам.

# Причины сходства и различий животного и растительного мира в биогеографических областях

При сравнении животного и растительного мира различных областей отличия между типами и классами почти не прослеживаются, так как в каждой биогеографической области можно встретить типы хордовых животных, голосеменных и покрытосеменных растений, классы млекопитающих, птиц, пресмыкающихся, земноводных, однодольных и двудольных растений. Различия между животными и растениями биогеографических областей проявляются при сопоставлении представителей отрядов и, в особенности, семейств и родов. Так, представители отрядов приматов, хоботных, страусов, попугаев, куриных, распространенных в Эфиопской био-

географической области, не встречаются в Палеоарктической. Представители семейства гиббонов из отряда приматов распространены в Индомалайской географической области и не встречаются в Африке. И, напротив, семейство мартышек, распространенное в Африке, отсутствует в Индомалайской биогеографической области. Точно так же семейство му-

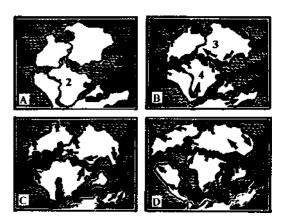



Рис. 52. Образование континентов в историческом процессе: / — Темис; 2 — Пангея; 3 — Лавразия; 4 — Гондвана.

равьедов, ленивцев и броненосцев, относящихся к отряду малозубых, живущих в Неотропической биогеографической области, не распространено в Неоарктической биогеографической области. Установлено, что хотя растения и животные Палеоарктической и Неоарктической биогеографических областей и сходны по отрядам и семействам, но различаются между собой только по родам и видам.

Сходство и различия между растениями и животными различных биогеографических областей можно объяснить, с одной стороны, историей возникновения континентов, а с другой — эволюцией органического мира. По мнению ученых-естествоведов, наша планета в различные эры и периоды имела другой вид. Так, по утверждению датского ученого А. Вегенера, примерно несколько миллионов лет назад Земля представляла собой не отдельные континенты, а единый материк — Пангею, омываемый единым океаном. Двести миллионов лет назад в триасовом периоде мезозойской эры земная суша Пангеи разделилась на две части — Лавразию и Гондвану, в результате чего животный и растительный мир единой суши также разошелся в две стороны (рис. 52).

Суша Гондваны, подобно надводной части обломка льдины, сместилась к югу. Впоследствии в результате воздействия подземных сил произошло разделение Гондваны на отдельные части с образованием континентов Антарктиды, Австралии, Африки, Южной Америки. В результате разделения Лавразии появились континенты Евразия и Северная Америка. Существование Евразии и Северной Америки в качестве единого континента продолжалось до кайнозойской эры, т. е. длилось 65 млн лет. Разделение единой суши

Пангеи на отдельные континенты, естественно, не могло не повлиять на эволюцию животных и растений. Например, в середине триаса. когда произошло отделение Австралии от Гондваны, там еще не появились представители подкласса плацентарных. Зато там были широко распространены яйцекладущие и сумчатые млекопитающие. Поэтому они имеют большое распространение в Австралии, а отдельные сумчатые до сих пор сохранились в Неотропической биогеографической области. На других континентах яйцекладущие и сумчатые были вытеснены в ходе естественного отбора представителями полкласса плацентарных, отличающихся по сравнению с ними более сложным строением и размножением. Новая Зеландия отделилась от основного материка раньше, чем Австралия. Поэтому там до настоящего времени сохранилась древняя ящерица гагтерия, широко распространенная в палеозойской эре. До четвертичного периода кайнозойской эры Евразию и Северную Америку соединял Берингов пролив. Это, в свою очерель, обусловило сходство животного и растительного мира Неоарктической и Палеоарктической биогеографических областей.

Таким образом, данные биогеографической науки также являются доказательством изменения органического мира в историческом процессе, единого происхождения животного и растительного мира разных континентов, появления различий между животными и растениями различных континентов в результате изоляции и воздействия условий окружающей среды.

#### Выводы

- 1. К настоящему времени макроэволюция полностью нашла свое подтверждение на основе научных фактов, накопленных в различных отраслях биологической науки.
- 2. Благодаря достижениям молекулярной биологии, определяя сходства и различия в структуре нуклеиновых кислот и белков у организмов, относящихся к разным систематическим группам, можно установить степень их родства и время возникновения.
- 3. Факты, накопленные эмбриологией, доказывают, что индивидуальное развитие организмов, относящихся к различным классам позвоночных животных, начинается с оплодотворенной яйцеклетки, и на начальных этапах развития они очень схожи между собой, а впоследствии происходит дивергенция зародыша. Биогенетический закон играет важную роль при доказательстве эволюции органического мира.
  - 4. Сравнительная анатомия доказывает эволюцию на основе

многочисленных фактов. К их числу относятся гомологичные и аналогичные органы, рудиментарные органы, явления атавизма, промежуточные формы, схожесть строения тела позвоночных животных.

- 5. Палеонтология на примере вымерших животных и растительных организмов подтверждает, что на Земле, начиная с древних эр до настоящего времени, органический мир постепенно изменялся от простого к сложному, росло многообразие органического мира.
- 6. Факты, накопленные биогеографией, раскрывают причины многообразия и своеобразного строения животного и растительного мира различных континентов.

#### Словарь терминов

Аналогичные органы (от *греч*. analogia — соответствие) — органы, которые выполняют одинаковую функцию, но имеют различное происхождение.

Атавизм (*om лат.* atavis — предки) — наличие у организмов органов и л и признаков, характерных для их далеких предков.

Геном (от *греч*. genos — происхождение) — совокупность генов в гаплоидном наборе хромосом.

Гомологичные органы (от *греч*. gomologos — подобный) — органы и л и их части, одинаковые по происхождению и строению.

Биогеография (от *греч*. bios — жизнь) — наука, изучающая распространение животных и растений по земному шару.

Конвергенция (от *лат*. convergere — приближаться) — схожесть организмов, имеющих различное происхождение, в результате естественного отбора и одинаковых условий.

Макроэволюция (от *греч*. makros — большой) — эволюционный процесс, протекающий в систематических группах за пределами вида.

Рудиментарные органы (от nam. rudimentum — зачаток) — остаточные органы, развитые у родоначальных организмов и утерявшие свои функции в ходе исторического процесса.

Филогенез (от *греч*. phile — племя, род, вид) — историческое развитие организмов и л и эволюция органического мира.

Эмбриология (от *греч*. embryon — зародыш) — наука, которая изучает эмбриональное развитие организмов.

3

112

#### Глава IV

#### ПРОИСХОЖДЕНИЕ И ИСТОРИЧЕСКОЕ РАЗВИТИЕ ЖИЗНИ НА ЗЕМЛЕ

В ходе изучения материала главы IV учащиеся должны усвоить следующие знания: основные свойства жизни, современные определения жизни, представления о происхождении жизни, их сущность и недостатки, теория биохимической эволюции жизни, ее преимущества, абиогенная и биогенная теории жизни, постепенное совершенствование растительного и животного мира в различные эры и периоды, увеличение их многообразия, промежуточные формы, их роль в эволюции.

# Задания

- І. Прочитайте текст § 19.
- II. Ответьте на вопросы.
  - 1. Перечислите самые основные свойства жизни.
  - 2. Укажите преимущества и недостатки основных теорий, объясняющих возникновение жизни.
  - 3. Расскажите о практическом значении опытов Л. Пастера.
  - 4. Объясните сущность возникновения жизни биогенным путем.
  - 5. Какие условия необходимы для возникновения жизни абиогенным путем?
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Согласно какой теории жизнь была занесена на Землю с других планет?
    - А) креационизм;
    - В) панспермия:
    - С) биохимическая эволюция;
    - D)креационизм, панспермия;
    - Е) самозарождение жизни.
  - 2. Несостоятельность какой теории доказали опыты Ф. Реди и
    - Л. Пастера?
    - А)креационизм;
    - В) панспермия;
    - С) развитие жизни из неорганических веществ;
    - D) самозарождение жизни;
    - Е) всех теорий.
  - 3. В каком ответе правильно указано практическое применение открытия Л. Пастера?

- А) консервация пищевых продуктов;
- В) стерилизация ран;
- С) пастеризация молочных продуктов;
- D) правильный ответ C;
- Е) все ответы дополняют друг друга.
- 4. В каком ответе указаны сторонники теории панспермии?
  - А) С. Аррениус;
- С) Ф. Крик:
- Е) А и С.

- В) Аристотель:
- D) А. И. Опарин;
- Укажите причину невозможности самозарождения жизни в настоящее время.
  - А) в настоящее время нет таких условий;
  - В) новые формы жизни будут немедленно уничтожены гетеротрофными организмами;
  - С) этого не допустят аутотрофы; О) все ответы неправильные;
  - Е) все ответы правильные.
- IV. Поясните рис. 53—55.
- V. Подумайте о сходстве и различиях теорий креационизма и панспермии.

# § 19. ПОНЯТИЕ «ЖИЗНЬ». ОСНОВНЫЕ ТЕОРИИ О ПРОИСХОЖДЕНИИ ЖИЗНИ

Определение понятия «жизнь». Одна из самых сложных проблем биологической науки — изучение сущности, многообразия, возникновения и развития жизни. Для правильного определения сущности жизни необходимо знать ее основные свойства, которые являются общими для всех живых организмов и по которым живое отличают от неживого.

На основе достижений современной биологической науки можно указать следующие наиболее важные свойства жизни:

- 1. Самообновление (связанное с обменом веществ и энергии).
- 2. Самовоспроизведение (связанное со сменой биологических систем друг другом, потоком информации).
- 3. Саморегуляция (связанная с потоком веществ, энергии и информации).

При создании современных определений жизни используются также достижения физики, математики, химии, кибернетики и других наук.

Свойства жизни наиболее полно освещены в определении жизни, данном академиком М. В. Волькенштейном: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот».

**Теории о происхождении жизни.** Вопрос о возникновении жизни интересовал человечество с незапамятных времен. Основные теории, объясняющие происхождение жизни на Земле, следующие.

- 1. Креационизм.
- 2. Самозарождение жизни.
- 3. Панспермия.
- 4. Биохимическая эволюция.

Согласно теории *креационизма*, жизнь возникла под воздействием каких-то сверхъестественных сил. Поскольку наука изучает только те явления, которые может наблюдать и проверять сама, она не может как признать, так и опровергнуть теорию креационизма.

Представления о *самозарождении жизни* были широко распространены еще в Древнем Китае, Вавилоне и Египте. Аристотель также был сторонником этого предположения.

До второй половины XVII в. существовали представления, согласно которым живые организмы могут возникать не только от своих предков биогенным путем, но и при благоприятных условиях — из неорганических веществ абиогенным путем. Например, были широко распространены мифические представления о том, что крокодилы могут возникать из ила, львы и тигры — из камней пустыни, мыши — из грязной одежды (рис. 53).

В 1688 г. итальянский ученый Ф. Реди доказал на опыте невозможность самозарождения жизни. Он оставил открытыми отдельные сосуды с мясом, а остальные закрыл марлей (рис. 54).

В сосудах, закрытых марлей, личинок мух не было, а на мясе в открытых сосудах их возникло бесчисленное множество. Таким



Р и с. 53. Опыт Ван Гельмонта, отражающий самозарождение жизни.

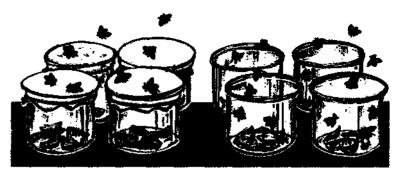



Рис. 54. Опыт Ф. Реди.

образом, с помощью простого опыта было доказано, что личинки мух не могут самозародиться на гнилом мясе, а появляются из отложенных мухами яиц. Ф. Реди на опыте доказал, что в настоящее время жизнь может развиться биогенным путем только из существующих жизненных форм.

В середине XIX в. французский ученый Луи Пастер также доказал невозможность самозарождения микроорганизмов.

Он подвергал длительному кипячению в колбе с открытым горлышком питательную среду, в которой могли размножаться микроорганизмы. Через несколько дней в колбе наблюдалось размножение микроорганизмов (в результате попадания в нее бактерий и их спор). В следующем опыте, чтобы микроорганизмы и их споры не могли проникнуть в содержимое колбы извне, на ее горлышко он насадил тонкую S-образную стеклянную трубочку (рис. 55). В результате микроорганизмы и их споры оседали в изгибах трубочки и не могли проникнуть внутрь колбы. Микроорганизмы и их споры, находившиеся в содержимом колбы, погибали при длительном кипячении, жидкость оставалась стерильной, и в ней не появлялись микроорганизмы.

Опыты Пастера имели огромное практическое значение, так как открыли возможности для консервации пищевых продуктов, пастеризации молочных продуктов, стерилизации ран и хирургических инструментов в медицине.

Согласно теории *панспермии*, жизнь существует вечно и кочует от планеты к планете. Сторонниками этой теории были знаменитый шведский физик, лауреат Нобелевской премии С. Аррениус, русский ученый В. И. Вернадский, известный американский биофизик и генетик, лауреат Нобелевской премии Ф. Крик и др. По мнению этих ученых, жизнь изначально появилась не на Земле, а возникла на одной из планет и была занесена на Землю вместе с метеоритом или

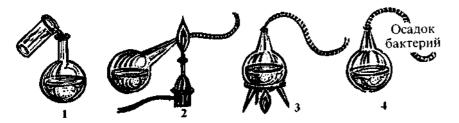



Рис. 55. Опыты Луи Пастера.

под воздействием световых лучей и при благоприятных условиях развилась от простых организмов к сложным. Исследования, проведенные в космосе российскими и американскими космонавтами, не дали положительных данных о наличии «жизненных частиц» в границах Солнечной системы. Ни в космосе, ни в почве, доставленной с Луны, ни в метеоритах до сих пор не найдены споры бактерий или иные убедительные «жизненные частицы».

Американским ученым удалось создать в лаборатории искусственные условия планеты Марс. В этих условиях путем воздействия на смесь водяных паров, метана, аммиака и оксидов углерода ультрафиолетовыми лучами при наличии почвы и пылевидного стекла они получили простые органические соединения. Однако в связи с отсутствием в атмосфере Марса свободного азота синтез аминокислот в этих условиях невозможен. По мнению американского ученого Ф. Крика, жизнь была сознательно занесена на Землю с планет другой космической системы. Однако фактов, подтверждающих или опровергающих подобные взгляды, недостаточно. Таким образом, теория панспермии также не решила проблему возникновения жизни. Даже если признать, что жизнь зародилась за пределами Земли и только потом попала на нее, все же остается неизвестным, каким путем она возникла в другом месте.

Приведенные выше теории не смогли объяснить происхождение жизни на Земле, так как любые теории только тогда имеют научное значение, когда они подтверждаются практическими опытами. Фактов, подтверждающих теории креационизма и панспермии, недостаточно. В настоящее время возможность самозарождения жизни экспериментально не доказана.

Теория биохимической эволюции жизни начала формироваться в 20—30-х годах XX в. Согласно этой теории, климатические условия Земли на начальных этапах ее развития сильно отличались от современных. В этих условиях, прежде всего абиогенным путем, синтезировались простые органические соединения, которые,

постепенно усложняясь в результате химической эволюции, превращались в простейшие жизненные формы. После этого началась биологическая эволюция.

По утверждению Дарвина, жизнь может зародиться только в условиях ее отсутствия. Вновь образовавшиеся органические вещества немедленно уничтожаются гетеротрофными микроорганизмами. Именно поэтому в настоящее время невозможно самозарождение жизни.

Вторым необходимым условием зарождения жизни на Земле является отсутствие кислорода в первичной атмосфере, так как наличие кислорода привело бы к расщеплению вновь образующихся органических веществ. Более подробно теория биохимической эволюции будет рассмотрена ниже.

#### Словарь терминов

Абиогенез — представление о развитии жизни из неорганической природы.

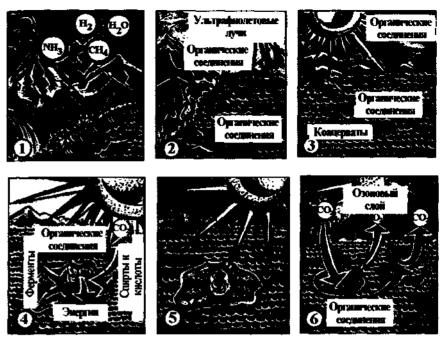
Биогенез — представление о развитии жизни из существующих жизненных форм.

Креационизм — теория о создании жизни сверхъестественными силами. Панспермия — теория о занесении жизни на Землю с планет другой системы.

Пастеризация — способ очищения жидких пищевых продуктов от микроорганизмов путем кипячения до 100°C.

## Задания

- I. Прочитайте текст § 20. Рассмотрите рис. 56—59.
- II. Ответьте на вопросы.
  - 1. Перечислите основные этапы химической эволюции жизни.
  - 2. Объясните, когда началась биологическая эволюция жизни.
  - 3. Объясните процесс образования коацерватов.
  - 4. Возможно ли возникновение жизни абиогенным путем в нынешних условиях?
  - 5. Какие данные подтверждают абиогенный синтез?
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Кем была создана теория биохимической эволюции?
  - А) В. И. Вернадский;
  - В) А. И. Опарин;
  - С) Дж. Холдейн;
  - D) В. И. Вернадский, А. И. Опарин;
  - Е) А. И. Опарин, Дж. Холдейн.


- 2. Что такое коацерваты?
  - А) насыщенный раствор углеводов;
  - В) концентрированный раствор нуклеопротеидов;
  - С) совокупность сложных органических соединений;
  - D) коллоидные соединения белковых молекул;
  - Е) все ответы неправильные.
- 3. Укажите свойства коацерватов.
  - А) образуются на начальном этапе химической эволюции;
  - В) у н и х наблюдается обмен веществ;
  - С) они окружены мембраной;
  - D) правильные ответы A, B;
  - Е) все ответы дополняют друг друга.
- 4. Как называются первичные клетки?
  - А) протобионты;
  - В) прокариоты;
  - С) эукариоты;
  - D) простейшие животные;
  - Е) многоклеточные.
- 5. Определите факты, подтверждающие, что первыми образовались нуклеиновые кислоты.
  - А) существование обратной транскрипции;
  - В) репликация РНК без ферментов;
  - С) таких данных недостаточно;
  - D) в с е ответы дополняют друг друга;
  - Е) нет правильного ответа.
- IV. Подумайте н а д тем, изменяется ли сущность т е о р и и б и о х и м и ч е с к о й . э в о л ю ц и и п р и образовании белка и л и нуклеиновых кислот в п е р в у ю очередь.

# § 20. СОДЕРЖАНИЕ ТЕОРИИ БИОХИМИЧЕСКОЙ ЭВОЛЮЦИИ ЖИЗНИ НА ЗЕМЛЕ

Теория абиогенной молекулярной эволюции жизни из неорганических веществ была создана русским ученым А. И. Опариным (1924) и английским ученым Дж. Холдейном (1929). По мнению естествоведов, Земля появилась примерно 4,5—7 млрд лет назад. Вначале Земля представляла собой пылевидное облако, температура которого колебалась в пределах 4000—8000°С. Постепенно в процессе охлаждения тяжелые элементы начали располагаться в центре нашей планеты, а более легкие — по периферии.

Предполагается, что самые простые живые организмы на Земле появились 3,5 млрд лет назад. Жизнь есть результат сначала химической, а затем биологической эволюции.

Химическая эволюция. Водород, азот, углерод, кислород, которые содержались в первичной атмосфере Земли, вступали в реакции



Р и с. 56. Развитие жизни на Земле: 1 — первичная атмосфера; 2 — образование органических веществ; 3 — образование коацерватов; 4 — простое брожение; 5 — образование нукленновых кислот; 6 — образование фотосинтеза и процессов дыхания.

взаимодействия и при этом образовывали такие простые органические соединения, как аммиак, метан, оксиды углерода, сероводород и водяные пары (рис. 56). Свободный кислород, бывший вначале в очень малых количествах, полностью вошел в состав соединений. Биологические мономеры синтезировались абиогенным путем. В результате охлаждения Земли возникли первичные океаны. За счет кислорода, который содержался в молекулах воды, про-исходило окисление простых органических веществ и образовались спирты, альдегиды, аминокислоты, и первичный океан все более и более насыщался сложными органическими веществами.

А. И. Опарин первым выдвинул идею экспериментального изучения возникновения жизни. И действительно, С. Миллер (1953) создал опытную модель первичных условий Земли. Воздействуя на нагретый метан, аммиак, водород и водяные пары электрическим разрядом, он осуществил синтез таких аминокислот, как аспарагин, глицин, глутамин (в такой системе газы имитировали атмосферу, электрический разряд — молнии; рис. 57).

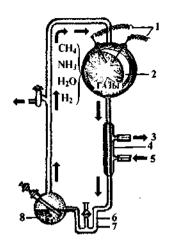



Рис. 57. Опыт Миллера: I — электроды; 2 — образование электрического разряда; 3 — вытекание воды; 4 — охлаждающее устройство; 5 — поступление воды; 6 — охлажденная вода, содержащая органические вещества; 7 — сифон; 8 — кипящая вода.

Д. Оро, нагревая цианистый водород, аммиак и воду, осуществил синтез аденина. Путем воздействия на метан, аммиак и воду ионизирующими излучениями были синтезированы рибоза и дезоксирибоза. Результаты подобных опытов подтвердились многочисленными исследованиями. В процессе эволюции мономеры постепенно превращались в биологические полимеры (полипептиды, полинуклеотиды), что также подтвердилось опытным путем. Так, в опытах С. Фокса были синтезированы протеиноиды (белковообразные вещества) путем нагревания смеси аминокислот. Впоследствии в опытах были синтезированы полимеры нуклеотидов.

По мнению А. И. Опарина, белковые молекулы образовывали коллоидные соединения, которые превращались в коацерватные капли (коацерваты — от лат. соасегvus — накопленный, собранный). Коацерваты могли присоединять к себе различные вещества из воды и постепенно стали приобретать различные свойства, в них происходили химические реакции, из них выделялись ненужные вещества. Однако коацерваты еще не могут быть названы живыми существами. На последующих этапах химической эволюции коацерваты начали расти, в них начало происходить нечто, подобное обмену веществ у живых существ. Предполагается, что коацерваты были окружены мембраной и приобрели способность делиться (рис. 58).

Такие коацерваты называются протобионтами или первичными клетками.

Соединения, подобные коацерватам, были синтезированы опытным путем и досконально изучены А. И. Опариным и его учениками.

Протобионты также еще не являются законченной формой жизни. Предполагается, что у них постепенно абиогенным путем

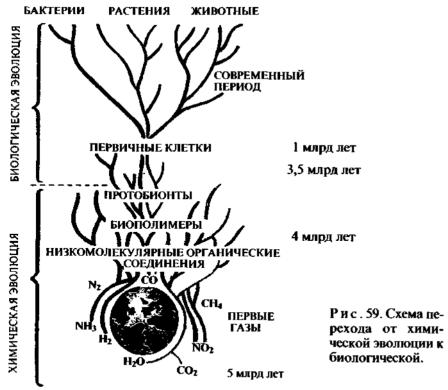



Рис. 58. Образование коацерватных капель.

появлялись соединения, подобные ферментам (коферменты, собственно ферменты), АТФ.

В превращении протобионтов в настоящие клетки большую роль сыграло возникновение матричного синтеза в результате взаимного приспособления и слияния функций белков и нуклеиновых кислот. С возникновением процесса матричного синтеза химическая эволюция уступила место биологической. Развитие жизни продолжалось теперь путем биологической эволюции. Однако было неизвестно, что в ходе биохимической эволюции жизни возникло прежде: белки или нуклеиновые кислоты. Согласно теории А. И. Опарина, первыми появились молекулы белка. Сторонники генетической гипотезы, наоборот, считали, что сначала возникли нуклеиновые кислоты. Такое предположение было выдвинуто в 1929 г. Г. Миллером. Лабораторные исследования доказали возможность репликации нуклеиновых кислот и без воздействия ферментов. По мнению ученых, первичные рибосомы состояли только из РНК, и свойство синтезировать белок у них могло появиться впоследствии. Позже были получены новые данные, подтверждающие это предположение. Репликация рибонуклеиновой кислоты без участия ферментов, обратная транскрипция, т. е. возможность синтеза ДНК на основе РНК — все это является доказательством генетической гипотезы. Таким образом, основными этапами биохимической эволюции жизни считаются следующие.

- 1. Образование простых органических веществ в результате химических реакций.
- 2. Образование полимеров типа полипептидов и полинуклеотидов из мономеров.
- 3. Образование коацерватов путем концентрации высокомолекулярных соединений.



- 4. Образование элементарных мембран, окружающих коацерваты.
- 5. Возникновение процесса обмена веществ.
- 6. Возникновение процессов самовоспроизведения на основе матричного синтеза (рис. 59).

Первые живые организмы — протобионты — были гетеротрофными, т. е. питались готовыми органическими веществами. Все жизненные процессы в них протекали анаэробным способом, так как в атмосфере не содержался свободный кислород. Запас органических веществ был небольшим, потому что процесс их абиогенного синтеза протекал очень медленно. Под влиянием естественного отбора в процессе эволюции возникли аутотрофные организмы. Возникновение организмов, обладающих способностью к фотосинтезу — первичных сине-зеленых водорослей — считается одним из самых значительных ароморфозов.

Первые фотосинтезирующие организмы появились примерно 3 млрд лет назад. Основное значение фотосинтеза в эволюции заключается в следующем.

- 1. Фотосинтез способствует обогащению атмосферы кислородом.
- 2. Возникновение фотосинтеза ослабляет конкуренцию организмов за органические вещества, синтезируемые абиогенным путем.

3. Появление в атмосфере озонового экрана в результате фотосинтеза защищает организмы от губительного воздействия ультрафиолетовых лучей. В результате образования в атмосфере свободного кислорода организмы стали переходить к аэробному дыханию. Поскольку аэробное дыхание было более эффективным по сравнению с анаэробным, переход к нему ускорил развитие и усложнение органического мира.

В настоящее время анаэробные организмы существуют только в условиях, где ощущается недостаток кислорода.

Первыми организмами были прокариоты. По мере увеличения содержания кислорода в атмосфере начали появляться эукариотные организмы.

Таким образом, жизнь на Земле возникла абиогенным путем из неорганических веществ в результате физико-химических процессов и биологического отбора. В современный период жизнь развивается только из живых форм биогенным путем. Возникновение жизни абиогенным путем в нынешних условиях невозможно.

#### Словарь терминов

Абиогенный синтез — синтез органических веществ из неорганических.

Анаэробные организмы — организмы, жизненные процессы которых протекают в бескислородной среде.

Аэробные организмы — организмы, жизненные процессы которых протекают в кислородной среде.

Коацерваты — коллоидные гидрофильные комплексы белков.

Матричный синтез — биологический синтез белковых м о л е к у л на основе информации, содержащейся в нуклеиновых кислотах.

# Задания

- I. Прочитайте текст § 21.
- II. Ответьте на вопросы.
  - 1. Можно ли отождествлять биологический регресс с общей дегенерацией?
  - 2. По какой причине направления эволюции сменяют друг друга?
  - 3. Утка и утконос яйцекладущие животные. Примером какого направления эволюции они являются и почему?
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Какие изменения присущи направлению эволюции ароморфозу?
    - 1) усложнение строения организмов;
  - 2) рост приспособлений организмов п р и отсутствии усложнения;
  - 3) образование новых систематических групп;
  - 4) упрощение строения;
  - 5) приспособление растений к перекрестному опылению;
  - 6) совершенствование системы органов, первостепенных для жизни;

- 7) изменение системы органов, второстепенных для жизни;
- 8) увеличение численности организмов.
- A) 1, 5, 6, 8; B) 1, 3, 6, 8; C) 1, 5, 7, 8;
- D)2,4, 6, 8; E) 1, 4, 5, 8.
- 2. Какое из изменений, указанных в тестовом задании 1, присуще общей дегенерации?
  - A)1; B ) 4; C) 5 ; D) 6; E) 7.
- 3. Какие изменения приводят к биологическому прогрессу?
  - 1) ароморфоз; 2) дегенерация; 3) идиоадаптация; 4) филогенез;
  - 5) филетические; 6) симпатрические; 7) симбиогенез;
  - 8) аллопатрические.
  - A) 1, 5, 7, 8; B) 1,2, 5, 7; C) 2, 4, 6, 8;
  - D(1,2,3,7; E(1,3,5,7)
- IV. Определите связи м е ж д у различными направлениями эволюции с п о м о щ ь ю приведенных н и ж е терминов:

Дегенерация

T

Симбиогенез — Биологический прогресс — Идиоадаптация

Ι

Ароморфоз

# § 2 1 . ГЛАВНЫЕ НАПРАВЛЕНИЯ ЭВОЛЮЦИОННОГО ПРОЦЕССА

.При рассмотрении эволюции органического мира, естественно, возникают вопросы: почему у всех живых существ развитие не шло в одном направлении — от простого к сложному, почему среди них встречаются организмы с простой и сложной организацией? На эти вопросы дали удовлетворительный ответ русские ученые А. Н. Северцов и И. И. Шмальгаузен. Как известно, в свое время Ч. Дарвин отмечал, что эволюционный процесс сопровождается постоянным приспособлением организмов к условиям среды. Изменение на протяжении исторических периодов условий среды, окружающей организмы, в широких или узких пределах обычно приводит к появлению у них общих или частных приспособлений. Общие приспособления связаны с усложнением системы жизненно важных органов. Если в связи с изменением окружающей среды наблюдаются: 1) увеличение численности особей того или иного вида; 2) расширение ареала, занимаемого этим видом; 3) образование на основе вида новых популяций, подвидов, видов и других таксонов, — то такой процесс называется биологическим прогрессом. В настоящее время в Центральноазиатском регионе индийские скворцы находятся в состоянии биологического прогресса по сравнению с другими птицами. Отсутствие у этих птиц инстинкта к месту обитания, их

агрессивность, всеядность, высокая плодовитость обусловливают их преимущества в борьбе за существование, что выражается во все большем увеличении численности и расширении их ареала. Если в начале XX в. эти птицы встречались только в приграничных районах Центральной Азии, теперь в связи с распространением на север их можно видеть во всех республиках и областях региона.

Анализируя главные направления биологического прогресса, А. Н. Северцов и И. И. Шмальгаузен установили, что он происходит на основе ароморфоза, идиоадаптации, общей дегенерации.

Биологический прогресс осуществляется различными способами. Первый способ заключается в усовершенствовании в историческом процессе важнейшей для жизнедеятельности организмов системы органов. Поэтому он называется морфофизиологическим прогрессом. При втором способе изменяется система органов, второстепенных для жизнедеятельности организмов, в связи с чем их строение не усложняется, но они приспосабливаются к окружающей среде. При третьем способе организмы претерпевают биологический прогресс в результате изменения их организации от простого к сложному.

Под ароморфозом, т. е. морфофизиологическим прогрессом, понимают эволюционные изменения, обусловливающие общий подъем степени организации, повышение интенсивности жизнедеятельности организмов. Ароморфозы дают живым существам значительные преимущества в борьбе за существование и открывают возможности для освоения новых мест обитания.

Переход растений из водной среды на сушу, от размножения спорами к размножению с помощью семян, появление покрытосеменных растений — все это проявления прогресса типа ароморфоза. Процессы усложнения нервной, кровеносной, пищеварительной систем и системы дыхания у позвоночных, возникновение классов

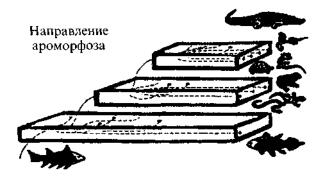



Рис. 60. Различные направления эволюционного прогресса. Схематически изображены ароморфоз, идиоадаптация и общая дегенерация.

рыб, земноводных, пресмыкающихся, птиц, млекопитающих также являются результатом эволюции органического мира путем ароморфоза.

Благодаря ароморфозам в эволюции органического мира строение и жизнедеятельность растений и животных усложнялись, среди них появлялись все новые и новые группы, происходило расширение их ареалов, ускорялся процесс образования отрядов, классов и типов.

Ароморфозы проявляются на основе длительной наследственной изменчивости и продолжительного естественного отбора. В любой крупной таксономической единице растений и животных можно увидеть изменения типа ароморфоза (рис. 60).

Идиоадаптация — эволюционные изменения, способствующие приспособлению организмов к определенным условиям жизни. В отличие от ароморфозов, идиоадаптация не является общим приспособлением, а связана с небольшими частными изменениями, которые не приводят к общему подъему степени организации и жизнедеятельности организмов по сравнению с таковой у их предков. Примерами идиоадаптации могут служить покровительственная окраска, явления мимикрии, наблюдаемые у животных, разнообразные приспособления, способствующие перекрестному опылению растений с помощью ветра, насекомых и птиц, приспособления плодов и семян к распространению (рис. 61). Точно так же форма и окраска тела, своеобразное строение плавников у представителей различных видов костных рыб являются результатом приспособления идиоадаптационного порядка. Такие приспособления в некоторой степени облегчают обитание организмов любого вида при определенных условиях и способствуют биологическому прогрессу.

Общая дегенерация означает переход организации от сложного строения к простому. Это направление эволюции органического мира тесно связано с переходом организмов к сидячему или паразитическому образу жизни. Например, у личинок асцидий имеются нервная система (хорда) и глаза, которые присущи хордовым животным. Затем в процессе перехода личинок во взрослое состояние и к сидячему образу жизни происходит регрессивный метаморфоз организма — исчезает хорда, нервная система превращается в узелок.

У таких паразитов человека, как свиной солитер и лентец широкий, нет кишечника, нервная система имеет простое строение и они почти лишены способности самостоятельно двигаться. Но зато имеют присоски, позволяющие им прикрепляться к стенкам кишечника хозяина, и хорошо развитые органы размножения. Некоторые растения, в том числе повилика, которые ведут паразитический образ жизни, лишены одного из основных органов — листа. У повилики вместо корней на стебле образовались присоски,



Р и с . 61. Идиоадаптация. Животные отряда насекомоядных класса млекопитающих. Наземные формы: I — прыгунчик; 2 — еж; 3 — кутора; 4 — землеройка. Земноводные: 5 — выдровая землеройка; 6 — крот; 7 — златокрот; 8 — выхухоль.

с помощью которых она высасывает питательные вещества из растения-хозяина. Это очень плодоносное растение. Его плоды не перевариваются в пищеварительных органах травоядных животных.

Таким образом, общая дегенерация, хотя и упрощает строение организмов, но приводит к увеличению численности особей этого вида, расширению его ареала, к развитию новых систематических групп, т. е. к биологическому прогрессу.

В настоящее время большинство групп насекомых, костных рыб, грызунов, а также цветковые растения находятся в состоянии биологического прогресса.

В развитии органического мира в противоположность биологическому прогрессу наблюдается и биологический регресс. В связи с тем, что при биологическом регрессе организмы не могут в достаточной мере приспособиться к условиям среды, происходит: а) уменьшение численности особей вида из поколения в поколение, б) сужение ареала, занятого этим видом, в) уменьшение числа популяций и видов.

В состоянии биологического регресса находятся из растений — некоторые группы папоротников, из животных — земноводные, пресмыкающиеся, из млекопитающих — состоящий лишь из двух видов род выхухолей, относящийся к отряду насекомоядных.

## Задания

**В** табл. 20 приведены крупные изменения, которые произошли у растений и животных. 1. По этим изменениям определите основные направления эволюции. 2. Заполните таблицу и обозначьте напротив каждого пункта направления эволюции: ароморфоз — буквой А, идиоадаптацию — буквой И, дегенерацию — буквой Д.

Таблица 20

| 1<br>11/11 | Приспособления, возникшие в процессе<br>эволюции                  | Направления<br>эволюции |
|------------|-------------------------------------------------------------------|-------------------------|
| 1          | Возникновение многоклеточных                                      |                         |
| 2          | Переход к половому размножению                                    |                         |
| 3          | Образование хорды                                                 |                         |
| 4          | Образование позвоночного столба                                   |                         |
| 5          | Появление пятипалых конечностей                                   |                         |
| 6.         | Образование плавников                                             |                         |
| 7          | Образование трехкамерного сердца у земноводных                    |                         |
| 8          | Образование двух кругов кровообращения у<br>земноводных           |                         |
| 9          | Развитие теплокровности                                           |                         |
| 10         | Усложнение головного мозга                                        |                         |
| 11         | Переход к внутреннему оплодотворению<br>у позвоночных             |                         |
| 12         | Переход у лошадей от пятипалой конечности к однопалой (копыту)    |                         |
| 13         | Утрата конечностей у китов                                        |                         |
| 14         | Утрата китами и слонами шерстяного покрова                        |                         |
| 15         | Утрата ленточными червями органов<br>кровообращения и пищеварения |                         |
| 16         | Образование хобота у слонов                                       | L                       |
| 17         | Образование длинной шен у жирафа                                  |                         |

#### Взаимосвязи различных направлений эволюции

В историческом развитии животных и растений ароморфозы встречаются реже, чем идиоадаптация. Тем не менее, ароморфозы всегда выражают новую, более высокую ступень развития органического мира. Виды, организация которых была усложнена благодаря ароморфозам, оказываются более приспособленными к жизни в новых условиях, чем их предки. Такая приспособленность закрепляется идиоадаптацией, иногда общей дегенерацией.

Следовательно, после каждого ароморфоза создаются новые возможности для идиоадаптации. А идиоадаптация и общая дегенерация обеспечивают наилучшее приспособление организмов к среде, не повышая степени их организации.

# § 2 2 . *ЛАБОРАТОРНОЕ ЗАНЯТИЕ.*ИЗУЧЕНИЕ ИДИОАДАПТАЦИИ У РАСТЕНИЙ

Оборудование. Плоды черешни, винограда, рогоголовника, березы, карагача, платана, клена, сосны, одуванчика, хлопчатника, гумая.

Ход занятия.

- І. Плоды раздаются учащимся по партам.
- II. Они рассматривают их, определяют плоды, которые разносятся птицами, млекопитающими и ветром.
  - III. По результатам наблюдений заполняется следующая таблица.

Таблица 21

| Плоды | Способы распространения плодов |       |           |        |
|-------|--------------------------------|-------|-----------|--------|
| Поды  | с помощью ветра                | водой | животными | ЛЮДЬМИ |
|       |                                |       |           |        |
|       |                                | ļ     |           |        |
|       |                                |       |           |        |

# Задания

- I. Прочитайте текст § 23 и проанализируйте рис. 62.
- П. Определите, к каким эрам относятся приведенные на схеме периоды.



#### III. Выполните задание.

Используя материал учебника физики для 9-го класса, расскажите о распаде радиоактивных элементов и возможностях определения возраста палеонтологических ископаемых в земных слоях с помощью радиоактивных изотопов.

#### IV. Решите задачу.

Если из 1 кг урана в течение каждых 100 млн лет сохраняется 985 г урана, образуется 13 г свинца и 2 г гелия, то сколько урана, свинца и гелия может образоваться из 100 г урана за 10 млн лет?

#### V. Определите правильные ответы в тестовых заданиях.

- 1. В какой эре образовались первые живые организмы? А) архей; В) протерозой; С) палеозой; D) мезозой; Е) кайнозой.
- 2. Какие ароморфозы произошли в архейской эре?
  - 1) развитие бактерий: 2) возникновение гетеротрофных организмов:
  - 3) фотосинтез; 4) появление прокариотов; 5) образование многоклеточных организмов; 6) переход к половому размножению. A) 1, 2, 3; B) 2, 4, 6; C) 3, 5, 6; D) 2, 5, 6; E) 1, 3, 6.
- 3. Какие процессы происходили в протерозойской эре?
  - 1) процессы горообразования; 2) образование суши; 3) повышение содержания углекислого газа; 4) насыщение атмосферы и воды кислородом; 5) выход растений на сушу; 6) сокращение содержания углекислого газа и кислорода.
  - A) 1, 2, 5; B) 2, 4, 6; C) 1, 2, 4; D) 2, 5, 6; E) 1, 2, 6.
- 4. Организмы, возникшие в протерозойской эре. ...
  - 1) водоросли; 2) кишечнополостные; 3) кольчатые черви; 4) моллюски; 5) членистоногие; 6) рыбы; 7) земноводные; 8) низшие хордовые.
  - A) 1, 2, 3, 4, 5, 6; B) 1, 2, 3, 5, 6, 7, 8; C) 1, 2, 3, 4, 5, 8; D) 1,2,3,4,5,7; E) 1,2,3,4,6,7.
- 5. Организмы, возникшие в кембрийском периоде, ...
  - 1) моллюски; 2) кольчатые черви; 3) коралловые полипы; 4) трилобиты; 5) псилофиты; 6) ракоскорпионы; 7) водоросли; 8) броненосцы. A) 1, 4, 6, 8; B) 1, 3, 5, 8; C) 1, 2, 3, 8; D) 1, 2, 4, 8; E) 1, 3, 7, 8.
- 6. Организмы, возникшие в девонском периоде, ...
  - 1) папоротники; 2) бескрылые насекомые; 3) хвощи; 4) хрящевые

- рыбы: 5) плауны: 6) костные рыбы: 7) кистеперые рыбы: 8) стегоцефалы; 9) голосеменные; 10) пресмыкающиеся.
- A) 1, 2, 3, 4, 5, 6, 7, 9; B) 1, 2, 3, 5, 6, 7, 10;
- C) 1, 2, 3, 5, 6, 7, 8, 10; D) 1, 2, 3, 4, 5, 7, 8, 10;
- E) 1,2, 3,4, 6, 7, 8.
- 7. Организмы, широко распространенные в каменноугольном периоде, -...
  - 1) папоротники; 2) бескрылые насекомые; 3) хвощи; 4) хрящевые рыбы; 5) плауны; 6) костные рыбы; 7) кистеперые рыбы; 8) стегоцефалы: 9) голосеменные: 10) пресмыкающиеся.
  - A) 1,2, 3,5, 8, 9;
- B) 2, 3, 4, 5, 10;
- C) 2, 4, 6, 8, 10:

- D) 1,2, 3,5, 7, 9;
- E) 2, 3, 5, 7, 10.
- 8. Организмы, возникшие в пермском периоде, ...
  - 1) папоротники: 2) бескрылые насекомые: 3) хвоши: 4) хряшевые рыбы; 5) плауны; 6) костные рыбы; 7) кистеперые рыбы; 8) стегоцефалы: 9) голосеменные: 10) пресмыкающиеся.
  - A) 7, 8; B) 8, 9; C) 9, 10; D) 6, 10; E) 2, 10.

# § 23. ЖИЗНЬ В АРХЕЙСКОЙ, ПРОТЕРОЗОЙСКОЙ И ПАЛЕОЗОЙСКОЙ ЭРАХ

Архейская эра\* длилась 900 млн лет. В ранних слоях эры живые существа не оставили никаких следов. Это объясняется в основном тем, что осадочные породы подверглись большим изменениям под действием высокой температуры и давления.

\* Земля и другие планеты Солнечной системы появились 4.5—7 млрд лет тому назал.

Вся история развития Земли с момента ее появления до настоящего времени разделяется на эры. эры — на периоды, а периоды — на эпохи. Эры имеют названия греческого происхождения: архейская — древнейшая, протерозойская — первобытная жизнь, палеозойская — лревняя жизнь, мезозойская — срединная жизнь, кайнозойская — новая жизнь. Периоды названы по тем географическим районам, где соответствующий земной слой был впервые изучен, например, девонский период — от английского графства Левон, пермский — от российского города Пермь, юрский от Юрских гор во Франции. Периоды названы также по тем отложениям, которые составляют основную массу слоя, например, карбон или каменноугольный период с преобладающей массой каменного угля, меловой период — с меловыми отложениями. Разделение истории развития Земли на эры и периоды не случайно. Конец одной эры и начало другой обычно тесно связаны с изменениями очертаний поверхности Земли, в частности, с перераспределением соотношений суши и морей, ускорением процессов горообразования, изменением развития органического мира. Для определения продолжительности эр и периодов пользуются «земными часами» проводят сравнительное изучение остаточных продуктов распада радиоактивных элементов. Распад их происходит всегда с постоянной скоростью независимо от условий внешней среды. Например, по подсчетам ученых, из 1 кг урана в течение каждых 1 0 0 млн лет сохраняется 985 г урана, образуется 13 г свинца и 2 г гелия.

Наличие органических веществ — известняка, мрамора, углеродистых веществ — свидетельствует о том, что в архейской эре существовали живые организмы, бактерии, сине-зеленые водоросли.

В поздних слоях архейской эры найдены и колониальные водоросли. В горных породах архея чаще встречаются графиты, которые считаются составной частью органических соединений микроорганизмов. В известняковых горных породах примитивные микроорганизмы образовали подземные ископаемые — железо, никель, марганец, серу, нефть и газы.

Протерозойская эра длилась 2 млрд лет. В конце архея и начале протерозоя происходили активные горообразовательные процессы, в результате которых образовалось довольно много суши. В этой эре шло усиленное развитие бактерий и водорослей. Особое значение имело возникновение зеленых, бурых, красных водорослей. У прибрежных водорослей произошла дифференциация тела, в результате которой одна часть тела прочно прикреплялась к субстрату — какой-нибудь поверхности, а другая приспосабливалась к протеканию фотосинтеза.

Развитие жизни привело к изменению формы и состава земной поверхности. В результате фотосинтеза растения усваивали углекислый газ из атмосферы и выделяли кислород. Благодаря насыщению воздуха и воды кислородом появились аэробные организмы. К концу протерозойской эры развились многоклеточные организмы, водоросли, кишечнополостные, кольчатые черви, моллюски, членистоногие и многие другие типы беспозвоночных.

Подавляющее большинство животных было с двухсторонней симметрией тела, что обеспечило разделение тела на переднюю и заднюю, спинную и брюшную части. В передней части тела находились органы чувств и нервные узлы, спинная часть выполняла функцию защиты, а брюшная обеспечивала передвижение и добычу пищи. Все это привело к изменению поведения, подвижности животных, придало им ловкость.

Предполагается, что к концу протерозойской эры появились первые хордовые животные — представители подкласса бесчеренных. Хорда выполняла функцию опоры для мышц. Впоследствии развился орган дыхания — жабры. Все это послужило основой для дальнейшего совершенствования животного мира.

Палеозойская эра длилась 340 млн лет. Эта эра характеризуется некоторым разнообразием и совершенствованием жизни. С этой эры начинается образование скелета в теле эукариотных организмов, что обусловило полноту и последовательность палеонтологической летописи.

В кембрийский период климат стал умеренным, растения и

жизни, другие перемещались по течению. Были широко распространены и активно передвигались двустворчатые, брюхоногие моллюски, кольчатые черви, трилобиты. Появились первые представители позвоночных животных — панцирные рыбы, у которых не было челюсти. Панцирные считаются далекими предками современных круглоротых, миног, миксин.

В горных отложениях Туркестанского, Алатауского и Зарафшанского хребтов найдены остатки присущих кембрийскому периоду простейших, губок, кишечнополостных, ракообразных, сине-зеленых и зеленых водорослей. В отложениях Гиссарского хребта обнаружены споры растений, произраставших на суше.

В ордовикском периоде расширились площади морей, в них увеличилось многообразие зеленых, бурых, красных водорослей, головоногих и брюхоногих моллюсков. Усиливается образование коралловых рифов, сокращается многообразие губок, а также некоторых двустворчатых моллюсков.

В силурийском периоде усиливаются процессы горообразования, площадь суши увеличивается. Климат становится сравнительно сухим. Широко распространились головоногие моллюски. К концу периода развиваются ракоскорпионы. Некоторые многоклеточные зеленые водоросли, распространенные в прибрежных водах, выдержав борьбу за существование и естественный отбор, смогли перейти на сушу. Наличие почвы способствовало распространению первых наземных растений — псилофитов. Накопление в почве органических соединений впоследствии создало возможности для появления грибов. В Центральной Азии происходили мощные вулканические процессы. Климат был теплым. В горных отложениях Зарафшанского хребта найдены окаменелые отпечатки кишечнополостных животных и низкорослого псилофита.

В девонском периоде продолжается уменьшение площади морей и увеличение и разделение суши. Климат становится умеренным. Значительная часть суши превращается в пустыни и полупустыни. В морях развиваются хрящевые рыбы, в борьбе за существование сокращается число панцирных рыб. Затем появились костные рыбы. В мелководных бассейнах зарождались двоякодышащие и кистеперые рыбы. Отдельные представители кистеперых рыб — латимерия — были найдены как «живое ископаемое» в прибрежных водах Южной Африки, Мадагаскара. В этом периоде появляются первые леса из высоких папоротников, хвощей и плаунов. В связи с переходом отдельных групп членистоногих животных к дыханию атмосферным воздухом появляются многоножки и первые насекомые.

К середине девонского периода отдельные группы кистеперых рыб выходят на сушу, в результате чего возникли первоначальные вилы земноводных.

В начале *каменноугольного периода* значительная часть территории Центральной Азии была покрыта водой. К концу периода моря отступают, и в междуречье Амударьи и Сырдарьи на месте Аральского моря и на востоке от него образуются широкие просторы суши. Среди наземных споровых растений в большом количестве произрастали длинностебельные лепидодендроны, плауны, каламиты. Высота отдельных каламитов достигала 20—25 м. Из голосеменных изредка встречались кордаиты.

В каменноугольном периоде климат был влажным, с большим содержанием углекислого газа в воздухе. Большинство низменностей на с у ш е было заболочено. Там произрастали папоротники, достигающие высоты 40 м, хвощи, плауны, которые размножались спорами. Кроме них, появились голосеменные растения. Массовая гибель древовидных растений привела впоследствии к образованию в этих местах каменноугольных пластов. Первые представители земноводных — стегоцефалы — были весьма многочисленны и многообразны. Развивались летающие насекомые — тараканы и стрекозы.

К началу *пермского периода* климат становится с у ш е и холодней. Такие условия были крайне неблагоприятными для земноводных. Большая часть их вымерла. Более мелкие представители земноводных укрылись в болотах и отмелях. Борьба за существование и естественный отбор в условиях сухого и более или менее холодного климата вызвали изменения в отдельных группах земноводных, из которых затем произошли пресмыкающиеся.

В начале пермского периода на месте Кызылкума, Ферганских и Памирских гор были крупные острова и полуострова. Из растений встречались каламиты, древовидные кордаиты, некоторые хвойные.

Таким образом, в палеозойской эре имело место дальнейшее развитие животных, произошли крупные ароморфозы, т. е. зарождались бесчелюстные панцирные и кистеперые рыбы, первые представители земноводных и, наконец, представители класса пресмыкающихся. Растения вышли на сушу, среди н и х появились споровые, семенные, а затем голосеменные.

# Задания

- І. Прочитайте текст § 24.
- II. Внимательно изучите рис. 62.
- III. Ответьте на вопросы.
  - 1. Какие высокоорганизованные формы растений и животных появились в мезозойской эре?

- 2. Какие изменения произошли в растительном и животном мире в кайнозойской эре?
- 3. Приведите примеры промежуточных форм, связывающих друг с другом различные группы животных и растений.
- 4. На основе какого закона Ж. Кювье удалось реконструировать внешний облик древних животных?

#### IV. Определите правильные ответы в тестовых заданиях.

- 1. Периоды мезозойской эры ...
  - 1) кембрийский; 2) триасовый; 3) силурийский; 4) третичный; 5) юрский; 6) девонский; 7) четвертичный; 8) меловой.
  - A) 1, 2, 6; B) 2, 5, 8; C) 2, 4, 8; D) 1, 5, 8; E) 2, 4, 6.
- 2. Периоды кайнозойской эры ...
  - 1) кембрийский; 2) триасовый; 3) силурийский; 4) третичный; 5) юрский; 6) девонский; 7) четвертичный; 8) меловой.
  - A) 2, 4; B) 2, 8; C) 2, 7; D) 1, 8; E) 4, 7.
- 3. Период, в котором появились первые птицы, ... 1) пермский; 2) юрский; 3) меловой; 4) триасовый; 5) девонский.
  - A)1;B)2;C)3;D)4;E)5.
- 4. Период, в котором появились основные отряды млекопитающих животных, —...
  - А) юрский; В) меловой; С) третичный;
  - D) четвертичный; E) триасовый.
- 5. Период, в котором получили развитие человекообразные обезьяны...
  - А) юрский; В) меловой; С) третичный;
  - D) четвертичный; E) триасовый.
- 6. Укажите промежуточные формы.
  - 1) диплодок; 2) кистеперые рыбы; 3) ихтиостега; 4) терапсид; 5) голосеменные; 6) семенные папоротники; 7) археоптерикс.
  - A) 2, 4, 5; **B)** 1, 3, 7; C) 3, 5, 7; **D)** 2, 6, 7; E) 2, 3, 7.

# § 24. ЖИЗНЬ В МЕЗОЗОЙСКОЙ И КАЙНОЗОЙСКОЙ ЭРАХ

Мезозойская э р а длилась 175 млн лет. Триасовый период этой эры характеризовался сухим климатом. Леса состояли из голосеменных, хвойных растений, саговников и частично из споровых растений — папоротников и хвощей. На суше увеличивалось многообразие пресмыкающихся. Задние конечности у н и х стали более развитыми, чем передние. Предки современных ящериц и черепах также появились в этом периоде. В триасовом периоде климат отдельных территорий был не только сухим, но и холодным. В результате борьбы за существование и естественного отбора из некоторых хищных пресмыкающихся появились первые млекопитающие, которые были не больше крыс. Предполагают, что они, как и современные утконосы и ехидны, были яйцекладущими.



Рпо. 62. Развитие органического мира. / известковые води росли; 2 организмы, родственные і-убкам и кораллам: 3 грилобиты; 4 моллюски; 5 гигантские ракоскорпионы; 6 панцирные; " головоногие моллюски: 8 псилофиты; > сигиллярии; K'лепидодендроны; // древовидньи кистеперые рыбы: 13 папоротники; /2 сухопутные скорпионы; 14 гигантские юмноводные; 15 древние акулообразные рыбы; 16 морские лилии; 17 аммониты: *18* пареязавры; *19* инастранцевия; *20* каламиты; *21* предки черепах-ялакохелис: *ti* гравоя тыс ящеры-" бронтозавры; 23 рыбояшеры-ихтиозавры; 24 ракообразные]

плезиозавры; 26 змсеящеры-мезозавры; 27 грехрогие ящеры-трицопетореы; 28 цикас; 29 стегозавр; 30 летающий ящер; M первоптина археоптерикс; 32 хищный ящер-Риранозавр; 33 древние млекопитающие; 34 предки лошадей; осетровая рыба: 36 ветвистые кораллы: 37 морские осли; 38 дельфин; 39 полуобезьяна лемур; 40 безро! ий носоро): 41 человекообразная обезьяна; 42 мамон к "і.ііі пир: 44 полень; 45 кальмар и костные Рыбы; 46 кпк 47 южная обезьяна-австралопитек; 48 иочеловек-нитекантроп; 49 неандерталец; 50 человек Разумный.

В *юрском периоде* благодаря теплому и влажному климату процветали древовидные растения. В лесах, как и прежде, господствовали голосеменные и папоротникообразные растения. Некоторые из них, например секвойя, сохранились до настоящего времени. Первые цветковые растения, которые появились в этом периоде, имели примитивное строение и не были широко распространены. В результате расцвета споровых и голосеменных растений чрезмерно увеличивались размеры тела травоядных пресмыкающихся, некоторые из них достигали в длину 20—25 м. Пресмыкающиеся распространились не только на суше, но и в водной и воздушной среде. Широкое распространение получили летающие ящеры. В этом периоде появились археоптериксы.

# Задан ие

- I. Внимательно рассмотрите археоптерикса, изображенного на рис. 63, и определите, каким классам п о з в о н о ч н ы х животных п р и с у щ и его признаки
- П. На о с н о в е выявленных признаков и свойств сделайте заключение о его происхождении.

В меловом периоде климат резко изменился. Значительно уменьшилась облачность, и атмосфера стала сухой и прозрачной. В результате этого солнечные лучи попадали непосредственно на листья растений. Эти климатические изменения оказали отрицательное влияние на папоротникообразные и голосеменные растения, и их численность начала уменьшаться. Но зато покрытосеменные, наоборот, размножались. К середине мелового периода развились многие семейства однодольных и двудольных покрытосеменных растений. По своему многообразию и внешнему виду они во многом приблизились к современной флоре. На суше все еще сохранял свое господство класс пресмыкающихся. Хищные и травоядные пресмыкающиеся увеличивались в размерах. Их тела были покрыты панцирем. Птицы имели зубы, но в остальном они были близки к современным птицам. Во второй половине мелового периода появились представители подкласса сумчатых и плацентарных.

# Задание

Приведите п p и m e p ы a p о m о p  $\phi$  о a a и идиоадаптации a развитии растительного и животного a и a a a a a0 мезозойской эре.

Кайнозойская эра длилась 70 млн лет. Кайнозой — эра усиленного развития цветковых растений, насекомых, птиц и млекопитающих животных.

В начале третичного периода климат был теплым и влажным. Получили широкое распространение тропические и субтропические растения. К середине этого периода климат стал сухим, умеренным, а к концу его началось резкое похолодание. Эти изменения климата привели к сокращению лесов, появлению и широкому распространению травянистых растений. Усиленно развивался класс насекомых. Среди них возникли высокоорганизованные виды, которые способствовали перекрестному опылению цветковых растений и питались растительным нектаром. Уменьшилась численность

пресмыкающихся. На суше и в воздухе обитали птицы, млекопитающие, в воде — рыбы, а также млекопитающие, которые повторно приспособились к жизни в воде. К концу периода появились многие роды известных в настоящее время птиц. В начале третичного периода были широко распространены представители подкласса сумчатых, а в конце его в борьбе за существование они уступили место плацентарным млекопитающим животным.

Древнейшими из плацентарных млекопитающих животных являются представители отряда насекомоядных, от которых в течение третичного периода произошли другие отряды плацентарных, в том числе приматы. В середине *тариода правиваются* человекообразные обезьяны. В связи с сокращением лесов некоторые из них были вынуждены жить на открытых местах. В последующем от них произошли первобытные люди. Они были немногочисленны и постоянно боролись со стихийными бедствиями, защищались от крупных хищных животных.

В четвертичном периоде происходило неоднократное смещение льдов Северного Ледовитого океана на юг и обратно, что сопровождалось похолоданием и перемещением многих теплолюбивых растений на юг. С отступлением льдов они переселялись на прежние места. Такая повторная миграция (от лат. migratio — переселение) растений привела к смешиванию популяций, вымиранию видов, не приспособленных к изменившимся условиям, и способствовала появлению других, приспособленных видов.

К началу четвертичного периода эволюция человека ускоряется. Значительно совершенствуются способы изготовления орудий труда и их использование. Люди начинают изменять окружающую среду, учатся создавать для себя благоприятные условия. Увеличение численности и широкое распространение людей начало влиять на растительный и животный мир. Охота первобытных людей приводит к постепенному сокращению численности диких травоядных животных. Истребление крупных травоядных животных привело к резкому уменьшению численности пещерных львов, медведей и других крупных хищных зверей, питающихся ими. Вырубались деревья, и многие леса превращались в пастбища.

Промежуточные формы. Промежуточными формами называются организмы, которые по строению объединяют в себе признаки различных классов. Кистеперые рыбы, которые жили в девонском периоде, являются промежуточной формой между рыбами и земноводными. Археоптерикс — промежуточная форма между пресмыкающимися и птицами. Некоторые представители терапсид являются промежуточными формами между пресмыкающимися и млекопитающими. А семенные папоротники считаются промежуточными формами между папоротниками и голосеменными растениями. Наличие промежуточных форм является убедительным доказательством постепенного изменения органического мира в процессе исторического развития.

# Выводы

- 1. Наиболее важными, фундаментальными свойствами жизни являются самообновление, самовоспроизведение, саморегуляция.
- 2. Существующие теории, объясняющие происхождение жизни, можно подразделить на теории об абиогенном и биогенном происхождении.
- 3. Жизнь на Земле возникла абиогенным путем из неорганических веществ в результате биохимической эволюции.
- 4. Однако в настоящее время возникновение жизни абиогенным путем невозможно, так как вновь образовавшиеся органические вещества будут немедленно уничтожены гетеротрофными организмами.
  - 5. В современный период жизнь развивается только биогенным путем.
- 6. Данных, подтверждающих или опровергающих существование жизни за пределами Солнечной системы, в других космических системах, до сих пор недостаточно.
- 7. Развитие органического мира от простого к сложному, от однообразия к многообразию проявляется при сопоставлении ископаемых остатков растений и животных, живших в разные эры и периоды.

- 8. Палеонтологические данные показывают, что представители органического мира развивались не сразу, а постепенно, при этом простые организмы возникли вначале, а сложные позднее и, наконец, в мезозойской эре появились цветковые растения, птицы, млекопитающие.
- 9. Согласно учению А. Н. Северцова, биологический прогресс осуществляется в направлении ароморфоза, идиоадаптации и общей дегенерации.
- 10. Биологический прогресс в течение миллионов лет приводит к совершенствованию органического мира, увеличению его многообразия.
- 11. Промежуточные формы выражают родственные связи между представителями животных и растений, относящихся к различным систематическим группам.

#### Словарь терминов

Ароморфоз (от *греч*. airo — поднимаю + morphosi — форма) — развитие строения и жизнедеятельности организмов.

**Архей** (от греч. archaios — древний) — древнейшая эра.

Археоптерикс (от *греч*. archaios — древний + pteryx — крыло) — самая древняя птица.

**Дегенерация** (от *лат.* degenero — вырождаться) — переход организмов от сложного строения к простому.

Идиоадаптация (от *греч*. idios — специфический + *лат*. adaptatio — приспособление) — приспособление организмов к условиям среды.

Ихтиостега (от *греч*. ichthyos — рыба + siege — крыша) — один из видов стегоцефалов — земноводных, распространенных в девонский период, которые сохранили жабры, хвостовые плавники рыб.

Кайнозой (от *греч*. kainos — новый + zoe — жизнь) — новая эра.

Мезозой (от греч. mesos — средний + zoe — жизнь) — срединная эра.

Палеозой (от греч. palaios — древний + zoe — жизнь) — древняя эра.

Протерозой (от  $\it zpeu$ . proteros — первый из двух + zoe — жизнь) — эра первобытной жизни.

Терапсид — промежуточная форма между древними пресмыкающимися и первыми млекопитающими.

# Глава V

#### основы экологии

В процессе ознакомления с данной главой вы должны усвоить: 
1) сущность науки об общей экологии; 2) основные экологические понятия и факторы; 3) воздействие основных абиотических факторов, сезонных изменений в природе, фотопериодизма, биологических ритмов на живые организмы; 4) биотические факторы; симбиотические и антибиотические связи; 5) экологическое определение популяции и вида; 6) пути охраны редких и исчезающих видов, значение «Красной книги»; 7) сущность биогеоценозов, их составные части; понятия цепи питания и экологической пирамиды, саморегуляции и смены биогеоценозов; 8) различия между агроэкосистемами и естественными экосистемами, своеобразие экосистем Центральной Азии; 9) специфические особенности антропоэкосистем.

# Задания

- I. Прочитайте текст § 25 и изучите табл. 22.
- II. Ответьте на вопросы.
  - 1. Дайте определение понятия «экология».
  - 2. Расскажите о задачах и методах экологической науки.
  - 3. Что такое экологические факторы и на какие группы они подразделяются?
  - 4. Объясните ограничивающий фактор и приведите примеры.
  - 5. Что вы понимаете под максимумом, минимумом, оптимумом фактора?
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Какие уровни организации организмов изучает экология?
    - А) генный, организменный;
    - В) органный, клеточный;
    - С) организменный, популяционный, биоценозный;
    - D) популяционный, генный, клеточный;
    - Е) органный, биоценозный.
  - 2. Определите границу устойчивости для комнатной мухи.
    - A)10-37°C; B)0-40°C; C) 16-50°C; D) 7-50°C; E) 10-50°C.
  - 3. Какой раздел экологии изучает воздействие человека на эволюцию биосферы?
    - А) аутэкология;
    - В) синэкология;
    - С) эволюционная экология;

- D) историческая экология;
- Е) все ответы дополняют друг друга.
- 4. Определите раздел экологии, который изучает взаимосвязи организмов между собой и со средой.
  - А) аутэкология;
  - В) синэкология;
  - С) эволюционная экология;
  - *D)* историческая экология;
  - Е) все ответы дополняют друг друга.
- Какой раздел экологии изучает взаимоотношения между организмами в биоценозах?
  - А) аутэкология;
  - В) синэкология;
  - С) эволюционная экология;
  - D) историческая экология;
  - Е) все ответы дополняют друг друга.
- IV. Изучите рис. 64 и поразмышляйте о его содержании.
- V. Уясните сущность табл. 22.

# § 25. ЭКОЛОГИЧЕСКАЯ НАУКА И ЕЕ ЗАДАЧИ. МЕТОДЫ ИЗУЧЕНИЯ

Понятие «экология» было впервые введено в науку немецким биологом Эрнстом Геккелем в 1866 г. Экология изучает развитие, размножение, образ жизни отдельных особей, состав и изменение популяций и сообществ во взаимодействии со средой обитания.

Взаимосвязь экологии с другими науками показана в табл. 22, из которой видно, что живые организмы можно изучать на различных уровнях их организации. Указанные в правом столбце таблицы уров-

Таблица 22

| Отрасли<br>биологии                  | Генетика,<br>молеку-<br>лярная<br>биология | Цитология,<br>бнохимия | Гистология,<br>физиология | Анато-<br>мия | Экология                                                               |
|--------------------------------------|--------------------------------------------|------------------------|---------------------------|---------------|------------------------------------------------------------------------|
| Уровни<br>органи-<br>зации<br>живого | Гены                                       | Клетки                 | Ткани                     | Органы        | Организм, популяция, вид, биоценоз + абиотические факторы — экосистемы |

ни: организм, популяция, вид, биоценоз — изучаются экологической наукой.

К числу основных задач экологической науки относятся следующие.

- 1. Изучение закономерностей взаимоотношений различных групп организмов с факторами окружающей среды.
  - 2. Определение влияния организмов на среду обитания.
- 3. Изыскание путей разумного использования биологических ресурсов, прогнозирование изменений, которые могут наступить в результате человеческой деятельности, изучение путей управления процессами, происходящими в природе.
  - 4. Создание биологических способов борьбы с вредителями.
- 5. Создание и внедрение на промышленных предприятиях безот-ходных технологий.

Экология неразрывно связана с такими отраслями биологической науки, как генетика, эволюционное учение, систематика, физиология, этология.

Предметом изучения экологии являются различные уровни организации живого — популяция, вид, биоценоз, биосфера.

Экология состоит из следующих основных разделов: 1) аутэкология; 2) синэкология; 3) эволюционная экология; 4) историческая экология.

**. Аутэкология** изучает взаимоотношения организмов одного определенного вида или популяций между собой и с окружающей средой. Например, в настоящее время при изучении экологии популяций широко используется метод математического моделирования их размножения, постоянства, уменьшения численности.

Синэкология изучает взаимоотношения сообществ организмов, относящихся к различным видам, между собой и с окружающей средой. При этом изучаются многообразие, распространение обитающих на отдельных территориях микроорганизмов, растений и животных, конкуренция между ними и другие экологические проблемы.

Эволюционная экология изучает изменения, происходящие в экологических системах с момента возникновения жизни на нашей планете, воздействие человека на эволюцию биосферы. Используя палеонтологические данные и сведения о современных экологических системах, эволюционная экология старается теоретически реконструировать (восстановить) древние экологические системы.

**Историческая экология** изучает экологические изменения, произошедшие в ходе человеческой цивилизации и технологического прогресса начиная с эпохи неолита до современного периода.

Указанные выше задачи решаются с помощью различных метолов.

Полевой метод. С помощью этого метода изучается влияние совокупности, факторов среды на популяцию, общее состояние развития и жизни вида в определенных условиях.

**Метод** экологических опытов позволяет изучать влияние отдельных факторов на развитие организма. Для этой цели обычно создается модель той или иной природной системы. Так, аквариум служит моделью пресноводного бассейна.

**Метод математического моделирования** позволяет прогнозировать жизнеспособность экосистемы и определить ее будущее. При применении данного метода широко используется компьютерная техника.

Основные экологические понятия. Совокупность отдельных видов, живущих в определенной среде, образует экосистемы. Термины «сообщество» и «экосистема» соответствуют понятию биоценоза, часто применяемому в научной литературе. Крупные региональные или субконтинентальные биосистемы своеобразного вида и с определенным растительным миром называются биомами. Комплексы всех живых организмов, находящиеся в устойчивом равновесии с физической средой Земли и в состоянии обмена энергией с Солнцем, называются биосферой или экосферой.

Средой называются все условия живой и неживой природы, в которых обитают отдельные организмы и популяции и которые оказывают непосредственное или косвенное влияние на их состояние, развитие и размножение.

Составные части среды, которые оказывают влияние на живые организмы, называются экологическими факторами.

Все экологические факторы подразделяются на три основные группы.

- **1.** Абиотические факторы совокупность условий неорганической природы. К ним относятся почва, климат, топографические и другие физические факторы.
- **2.** *Биотические факторы* это факторы живой природы (взаимодействие живых организмов между собой и со средой обитания).
- **3.** *Антропогенные факторы*. **К** ним относятся факторы, связанные с человеческой деятельностью.

Комплексное воздействие факторов на организм. Ограничивающие факторы. На живые организмы оказывают воздействие очень многие факторы. Но результат их воздействия на отдельные организмы различен. Наиболее благоприятный для жизни организма уровень фактора называется *оптимальный*. Любой экологический фактор характеризуется своим наивысшим — максимальным и



Рис. 64. Влияние экологического фактора.

наименьшим — минимальным уровнем. Естественно, что для каждого живого организма имеется свой максимальный, минимальный и оптимальный уровень (рис. 64).

Граница устойчивости — условия, за пределами которых невозможна жизнь организма (например, комнатная муха не может жить при температурах ниже 7 «С и выше 50 чС). Для каждого вида существует своя граница устойчивости к различным экологическим факторам.

Факторы, которые приводят к ослаблению жизнедеятельности организмов, называются ограничивающими. Один из факторов, влияющих на организм, может быть ограничивающим. Так, миграция животных и растений на север или на юг обычно связана с недостатком тепла или влажности. Ограничивающее влияние может оказывать не только недостаточность, но и избыток фактора.

# Задание

- 1. Дикий хлопчатник, привезенный с экватора, в условиях Ташкента не дает урожай.
- 2. Количество хлореллы при выращивании в колбе не увеличивается.
- 3. В клетке с избытком пиши мыши не размножаются.

Какие факторы ограничивают размножение организмов в перечисленных выше условиях?

### Задания

#### I. Прочитайте текст § 26, заполните табл. 23.

Таблица 23

| Излучения, оказывающие<br>биологическое воздействие | Их биологическое воздействие (примеры) |  |  |
|-----------------------------------------------------|----------------------------------------|--|--|
| 1.                                                  |                                        |  |  |
| 2.                                                  |                                        |  |  |
| 3.                                                  |                                        |  |  |

#### II. Ответьте на вопросы.

- Какое значение имеют температура, свет и вода для жизни организмов?
- 2. Объясните полезное и вредное влияние ультрафиолетового излучения.
- 3. Приведите примеры теплокровных и холоднокровных животных.
- 4. Приведите примеры ксерофитов, произрастающих в Центральной Азии.
- 5. Объясните механизмы водоустойчивости у животных.

#### III. Определите правильные ответы в тестовых заданиях.

- 1. Определите химические механизмы теплокровности.
  - А) интенсивность реакций окисления-восстановления;
  - В) хорошая обеспеченность тканей кислородом;
  - С) хорошее развитие подкожной жировой клетчатки;
  - D) A и C;
  - Е) А и В.
- 2. Определите физические механизмы теплокровности.
  - А) наличие толстого подкожного жирового слоя;
  - В) хорошо развитые потовые железы;
  - С) интенсивное протекание реакций окисления-восстановления;
  - D) АиС;
  - Е) А и В.
- 3. Что такое постоянство Солнца?
  - А) энергия солнечного излучения, падающего на Землю;
  - В) энергия солнечного излучения в верхних слоях атмосферы;
  - С) энергия солнечного излучения, падающего на гидросферу;
  - D) все ответы дополняют друг друга;
  - Е) нет правильного ответа.
- 4. Под влиянием каких лучей происходят образование витамина Д, синтез пигментов сетчатки глаз и кожи?
  - А) видимых лучей:
  - В) инфракрасных лучей;
  - С) ультрафиолетовых лучей;
  - D) все ответы правильные;
  - Е) ВиС.

- Каким организмам присуще уменьшение транспирации и потоотделения?
  - А)гидрофитам;
  - В)гигрофитам;
  - С) мезофитам;
  - О) степным и пустынным растениям, верблюдам;
  - Е) все ответы правильные.
- IV. Внимательно изучите механизмы п p и c п о c о б л е н и я растений и животных к дефициту воды.

# § 26. АБИОТИЧЕСКИЕ ФАКТОРЫ. КЛИМАТИЧЕСКИЕ ФАКТОРЫ

Абиотические (неживые) факторы экологических систем включают:

- 1) климатические факторы;
- 2) почвенные факторы;
- 3) топографические факторы.

К климатическим факторам относятся температура, свет, влажность. Ниже рассмотрим влияние этих факторов на живые организмы.

Температура является одним из важнейших абиотических факторов, оказывающих большое влияние на жизнь, размножение и распространение организмов на Земле. Жизненные процессы протекают в узком температурном диапазоне. В условиях низкой температуры большинство животных и растений погибают или переходят в состояние анабиоза, при котором все химические процессы резко замедляются или прекращаются. Однако некоторые виды водорослей, лишайников и пингвины могут жить и при температуре -70°С. Верхний температурный предел жизни на Земле равен 50—60°C. При такой температуре нарушается деятельность ферментов и свертывается белок. Однако в геотермальных источниках наблюдаются отдельные микроорганизмы, которые могут жить при температуре 70—80°C. Растения и большинство животных не могут поддерживать температуру тела на постоянном уровне. Морозостойкость растений связана с повышением количества сахара и концентрации клеточного сока или с уменьшением воды в их клетках.

В зависимости от способности поддерживать температуру тела все животные делятся на *темпокровных* и *холоднокровных*. К холоднокровным относятся беспозвоночные, рыбы, земноводные, пресмыкающиеся. Они не могут поддерживать температуру тела на

постоянном уровне. Повышение температуры среды ускоряет у них физиологические процессы. Понижение температуры среды ниже определенного уровня приводит к замедлению метаболических процессов и гибели организмов.

Теплокровные животные в процессе эволюции приспособились к поддержанию постоянной температуры своего тела независимо от изменения температуры окружающей среды. К теплокровным относятся птицы и млекопитающие. Температура тела у птиц несколько выше  $40^{\circ}$ C, а у млекопитающих поддерживается в пределах 37— $40^{\circ}$ C.

Постоянство температуры тела достигается с помощью двух механизмов.

Химический механизм связан с интенсивностью окислительновосстановительных реакций и регулируется центральной нервной системой рефлекторным путем. Появление четырехкамерного сердца, совершенствование системы дыхания имели большое значение в выработке способности поддерживать температуру тела на постоянном уровне. Физические механизмы поддержания постоянной температуры связаны с появлением густого шерстяного покрова, оперения, подкожной жировой клетчатки и потовых желез, зарождением механизмов регуляции кровообращения при помощи нервной системы.

Одним из механизмов приспособления животных к изменениям температуры внешней среды является *миграция*, т. е. переселение их в районы с более благоприятной температурой. Киты, некоторые птицы, рыбы, насекомые и другие животные в течение года мигрируют. При понижении или резком повышении температуры некоторые виды холоднокровных животных впадают в состояние оцепенения или спячки.

Отдельные представители теплокровных животных впадают в спячку при недостатке корма или при понижении температуры среды (медведи, барсуки). При этом у них замедляется обмен веществ, но почти не понижается температура тела. Одним из способов приспособления микроорганизмов, растений и низших животных к температурным условиям является переход их в состояние анабиоза. При этом микробы образуют споры, а простейшие животные — писты.

Свет. Процессы, происходящие в экосистемах, обеспечиваются в основном солнечной энергией. С точки зрения биологического воздействия различают три спектра солнечного излучения: ультрафиолетовый, видимый и инфракрасный. Энергия солнечного излучения, называемая солнечной постоянной, в верхней границе атмосферы равна 1380 Вт/м. Однако энергия солнечного излучения,

достигающего земной поверхности, довольно незначительна, так как часть света поглощается и отражается атмосферой. Длина волны солнечных лучей, пронизывающих верхние слои атмосферы и доходящих до земной поверхности, равна примерно 0,3-10 мкм. Лишь очень небольшая часть ультрафиолетовых лучей доходит до поверхности Земли. Длина волны этих лучей равна 0,30-0,40 мкм; они обладают высокой химической активностью и могут повреждать живые клетки. Однако в небольших дозах ультрафиолетовые лучи необходимы для организмов и оказывают полезное влияние. При действии этих лучей происходят образование витамина Д, синтез пигментов сетчатки глаз и кожи. Видимые лучи с длиной волны 0,40— 0,75 мкм составляют около 50% доходящих до поверхности Земли солнечных лучей. Излучения с различной длиной волны оказывают неодинаковое влияние на животных и растения. У животных различных видов способность к цветовому зрению неодинаковая. Она особенно развита у приматов. Видимые лучи имеют большое значение для осуществления процессов фотосинтеза у растений. Однако на фотосинтез расходуется лишь 1% видимых лучей, остальная же часть отражается или расходится в виде теплоты.

Интенсивность фотосинтеза у растений зависит от оптимального уровня света (светонасыщения). За пределами этого уровня фотосинтез замедляется. Растения усваивают различные спектры видимых лучей при помощи фотопигментов.

Инфракрасные лучи с длиной волны более 0,75 мкм человеческий глаз не различает, они составляют около 49% солнечной энергии. принимаемой живыми организмами. Инфракрасные лучи основной источник тепла. Особенно много их в составе прямых солнечных лучей. В зависимости от потребности в свете растения подразделяются на светолюбивые, тенелюбивые и теневыносливые. Светолюбивые растения могут развиваться лишь на открытых местах с высокой интенсивностью света. Процессы фотосинтеза в них протекают интенсивно. К ним относятся дикие представители лука и тюльпаны, произрастающие в пустынях и полупустынях. Тенелюбивые растения, наоборот, избегают интенсивного света, они растут в тенистых местах. К таким растениям относятся папоротники и мхи, произрастающие в лесах. Теневыносливые растения могут свободно произрастать как в тенистых, так и в хорошо освещенных местах. К ним относятся береза, сосна, дуб, земляника, фиалка и др. Для животных свет имеет в основном информативное значение. У простейших животных имеются органы, воспринимающие свет, при участии которых осуществляется фототаксис (движение в сторону света). Все животные начиная с кишечнополостных имеют органы, воспринимающие свет. Одни животные (совы, летучие мыши) только ночью ведут активный образ жизни, другие (кроты, аскариды) приспособлены к жизни в темноте.

Самыми важными процессами, протекающими у растений и животных под воздействием света, являются следующие.

- 1. Фотосинтез (данные об этом приведены выше).
- 2. Транспирация примерно 75% солнечных лучей, падающих на растения, расходуется на испарение воды.
- 3. Фотопериодизм синхронизация жизнедеятельности растений и животных с сезонами года.
- 4. Движение у растений осуществляется в качестве фотопериодизма и фотонастии, у животных и одноклеточных растений в качестве фототаксиса.
- 5. Зрение (у животных) одна из главных чувствительных функций.
- 6. Другие функции синтез витамина Д, пигментация кожи и др. Влажность экологический фактор, который характеризуется содержанием воды в воздухе, почве и живых организмах. Вода является основной минеральной составной частью организма. Вот почему количество воды, которая содержится в окружающей среде, наряду со светом является одним из важнейших показателей среды обитания.

Основными источниками воды служат осадки, подземные воды, роса и туман. По количеству осадков среда обитания может быть пустыней, степью, болотом и влажными лесами.

По водоустойчивости растения подразделяются на следующие группы:

- а) гидрофиты растения, живущие в воде;
- б) гигрофиты растения, произрастающие в условиях повышенной влажности;
- в) мезофиты растения, живущие в условиях нормальной влажности:
- г) ксерофиты растения, живущие в условиях недостаточной влажности.

Среди растений, произрастающих на территории Центральной Азии, широко распространены ксерофиты. Примером их могут служить саксаул, верблюжья колючка, джузгун. У ксерофитов выработались приспособления к жизни в условиях недостаточной влажности. Их клетки имеют своеобразную цитоплазму, жесткие и тонкие листья, иногда превращающиеся в шипы. Корни у верблюжьей колючки и саксаула очень длинные, достигают подземных вод. Многие растения уменьшают испарение воды путем сбрасывания листьев летом. Некоторые сельскохозяйственные растения, например джугара и просо, хорошо переносят недостаток воды.

У животных, обитающих в пустынях и степях, также выработаны механизмы приспособления к условиям безводья. Они могут быстро передвигаться на далекие расстояния и добираться к местам водопоя. Грызуны, пресмыкающиеся, насекомые и другие мелкие животные пустыни поддерживают водный баланс за счет воды, которая образуется в их организме в результате окислительных реакций. Особенно много воды образуется при окислении жиров (100 г жиров при окислении образуют 100 г воды). Вот почему жировой слой в теле животных пустыни достигает значительной толщины (верблюжий горб). Малая проницаемость наружных покровов многих животных пустыни предотвращает испарение воды через кожу. Большинство их ведет ночной образ жизни, а днем прячется в норах.

# **Механизмы** приспособления растений и животных к недостатку волы:

- 1. Наличие факторов, уменьшающих испарение воды:
  - а) превращение листьев в колючки (хвойные деревья);
  - б) наличие толстой кутикулы (насекомые, ксерофиты);
  - в) увядание листьев (альпийские растения);
  - г) опадание листьев в засуху;
  - д) раскрытие устьев листьев ночью и закрытие днем;
  - е) транспирация и уменьшение потоотделения (степные и пустынные растения, верблюд);
  - ж) укрытие животных в норах (мелкие пустынные млекопитающие, например, пустынная крыса);
  - з) закрытие дыхательных отверстий клапанами (многие насекомые).
- 2. Усиление всасывания воды:
  - а) наличие широкой поверхности корневой системы:
  - б) большая длина корня и его проникновение на глубину;
  - в) прокладывание животными путей к подземным водам (термиты).
- 3. Запасание воды:
  - а) в слизистых клетках и в клеточных стенках;
  - б) в специальном мочевом пузыре (пустынная жаба);
  - в) в виде жира (пустынная крыса, верблюд).
- 4. Физиологическая устойчивость к потере воды:
  - а) сохранение жизнедеятельности при большой потере воды (папоротники, плауны, мохообразные, лишайники);
  - б) быстрое восстановление массы тела при наличии воды даже после ее значительного уменьшения (дождевой червь, верблюд);

- в) сохранение при неблагоприятных условиях в виде семени, клубня, луковицы;
- г) летняя спячка в коконе (дождевой червь, двоякодышащие рыбы).
- 5. Миграция из безводных мест в места, где есть вода (многие животные степей и пустынь).

## Задания

#### І. Прочитайте текст § 27.

#### II. Ответьте на вопросы.

- 1. Объясните, почему почва является связующим звеном между биотическими и абиотическими факторами.
- 2. Расскажите о почвообразующих факторах и их значении.
- 3. Объясните значение основных топографических факторов.
- 4. Какой топографический фактор имеет большое значение для видообразования?
- 5. Сколько месяцев в году продолжается период, благоприятный для жизнедеятельности организмов на территории Центральной Азии?

#### III. Определите правильные ответы в тестовых заданиях.

- 1. Определите одного из основоположников почвоведения.
  - А) В. Н. Сукачев;
  - В) В. И. Верналский:
  - С) В. В. Докучаев;
  - D) В. Р. Вильяме;
  - Е) Е. Леруа.
- 2. Фотопериодизм это...
  - А) зависимость жизненных процессов растений и животных от продолжительности дня;
  - В) периодически повторяющиеся изменения биологических процессов;
  - С) зависимость от процесса фотосинтеза и изменения температуры;
  - D) A и C; E) A и В.
- 3. Биологические ритмы это...
  - А) зависимость жизненных процессов организмов только от продолжительности дня:
  - В) периодически повторяющиеся изменения биологических пронессов;
  - С) ритмическое повторение сердечных ударов;
  - D) все ответы дополняют друг друга;
  - Е) нет правильного ответа.
- 4. Биологические часы это...
  - А) ответная реакция организмов на суточный обмен;
  - В) способность организмов измерять время;
  - С) влияние эндогенных и экзогенных факторов;
  - D)только A:
  - Е) все ответы дополняют друг друга.

- 5. Какой фактор является основным для сезонных изменений у растений и животных?
  - А) температура;
  - В) их взаимоотношения;
  - С) количество пищи;
  - D) влажность;
  - Е) продолжительность дня.
- IV. Заполните табл. 24.

Таблица 24

| Почвообразующие факто | ры Пояснения |
|-----------------------|--------------|
| 1.                    |              |
| 2.                    |              |
| 3.                    |              |
| 4.                    |              |

V. Поразмышляйте со своими товарищами **о** значении **знания** фотопериодизма и биологических ритмов **в** практической деятельности человека.

# § 27. АБИОТИЧЕСКИЕ ФАКТОРЫ. ПОЧВЕННЫЕ И ТОПОГРАФИЧЕСКИЕ ФАКТОРЫ. СЕЗОННОСТЬ В ПРИРОЛЕ

**Почвенные факторы.** Изучением почв занимается наука *почвоведение*. Основы учения о почвах заложил русский ученый В. В. Докучаев. В своих трудах он впервые доказал, что почвы изменяются и развиваются, в них непрерывно происходят физико-химические и биологические процессы.

- В. В. Докучаев выделил- пять основных почвообразующих факторов:
  - 1) климат;
  - 2) геологические факторы (горные породы);
  - 3) топографические факторы (рельеф);
  - 4) живые организмы;
  - 5) время.

Почва является самым важным связующим звеном между абиотическими и биотическими факторами в экологических системах суши.

Рост растений зависит от наличия в почве необходимых питательных веществ и ее структуры. Для предупреждения разрушения почвы необходима разработка научных методов ее рационального использования.

- В состав почвы входят следующие основные компоненты:
- 1) минеральные вещества (до 50-60% общего ее состава);
- 2) органические вещества (до 10% общего состава);
- 3) воздух (до 15-20% общего состава);
- 4) вода (до 25-35% общего состава).

Помимо этого, в составе почвы содержится биотический компонент (бактерии, детритофаги, грибы). Содержащиеся в почве органические вещества расщепляются под воздействием различных физикохимических процессов, а также живых организмов (детритофагов, бактерий, грибов), и превращаются в гумус.

*Гумус* — конечный продукт распада органических веществ, и чем больше гумуса, тем выше плодородие почвы.

Топографические факторы связаны с другими абиотическими факторами и влияют на климат и почву.

Один из основных топографических факторов — высота. Средняя температура, ее суточные изменения, количество осадков, скорость ветра, интенсивность излучения, атмосферное давление, концентрация газов зависят от высоты. Эти факторы, в свою очередь, оказывают большое влияние на жизнедеятельность растений и животных.

Второй важный топографический фактор — расположение склонов. В северном полушарии освещенность и температура склонов, обращенных на юг, выше по сравнению со склонами, обращенными на север (в южном полушарии наблюдается обратная картина). А это оказывает большое влияние на состояние растений и животных.

Еще одним топографическим фактором является *крутизна склонов*. Чем круче склон, тем меньше растений на нем растет. На крутых склонах встречаются в основном ксерофитные растения.

Сезонные изменения в природе. Одним из замечательных свойств природы являются ее сезонные изменения. Температура, влажность и другие экологические факторы в течение года подвергаются периодическим изменениям. Сезонные изменения абиотических экологических факторов, в свою очередь, оказывают большое влияние на жизнедеятельность живых организмов. В разных регионах период, благоприятный для жизни, имеет различную продолжительность. Например, в регионе Центральной Азии этот период продолжается около 6—7 месяцев. В нашем регионе так же ярко проявляется период зимнего покоя. В результате понижения температуры и завершения вегетационного периода у многих растений замедляется обмен веществ, начинается листопад. Период зимнего покоя наблюдается у насекомых, земноводных, пресмы-

кающихся и других животных. Многие птицы мигрируют в теплые края.

Рост и развитие растений и животных зависят от продолжительности светового дня. Это явление называется фотопериодизмом.

Фотопериодизм — это зависимость активности физиологических процессов живых организмов от продолжительности светового дня. Данное явление можно наблюдать в опытах на растениях и животных с искусственным изменением освещения в течение дня. С фотопериодизмом связаны и процессы фотосинтеза растений.

Изменение продолжительности дня сопровождается годовыми колебаниями температуры. Поэтому длина дня служит сигналом для сезонных изменений.

В зависимости от ответной реакции растений на продолжительность дня они подразделяются на растения длинного, короткого дня и нейтральные. Цветение нейтральных растений не зависит от продолжительности дня.

Длина дня оказывает также большое влияние на рост и развитие животных. Так, гусеницы шелкопряда хорошо развиваются в условиях короткого дня. Фотопериодизм оказывает также сильное влияние на сроки наступления периода размножения, на эмбриональное развитие, линьку, миграцию птиц и зимнюю спячку млекопитающих и других животных.

Человек, изучая закономерности фотопериодизма у растений и животных, широко использует их в своих практических целях. Примером этого является круглогодичное выращивание овощей и цветов в теплицах, повышение яйценоскости кур на птицефабриках.

Биоритмы. На основе фотопериодизма у растений и животных на протяжении эволюции возникли биологические ритмы, протекающие с определенной периодичностью.

Биологические ритмы — это периодически повторяющиеся изменения интенсивности биологических процессов. Они могут быть суточными, сезонными и годичными. В качестве примера суточных биоритмов можно указать на изменение интенсивности фотосинтеза у растений, изменение скорости движения, выработки гормонов и клеточного деления у животных. У человека также наблюдаются ритмические изменения в течение суток частоты дыхания, уровня артериального давления и других процессов. Поскольку биоритмы являются наследственными реакциями, для правильной организации режима труда и отдыха человека нужно хорошо знать их механизмы.

Таким образом, реакции организмов на суточные и сезонные изменения обусловливают их способность измерять время, делают их обладателями «биологических часов».

#### Задания

# 1. Прочитайте текст § 28.

#### П. Ответьте на вопросы.

- 1. Что вы понимаете под биотическими факторами?
- 2. Расскажите о формах взаимоотношений между организмами.
- 3. Объясните на примерах основные различия антибиотическими и симбиотическими связями.
- 4. Какие формы соперничества между растениями и животными вы
- 5. Объясните полезные и вредные стороны взаимоотношений между организмами.

# **П.** Определите правильные ответы в тестовых заданиях.

- 1. Что такое антибиоз?
  - А) взаимно полезное существование организмов;
  - В) отрицательное воздействие друг на друга организмов, проживающих совместно;
  - С) взаимоотношения организмов не имеют для них никакого зна-
  - D) все ответы дополняют друг друга;
  - Е) нет правильного ответа.
- 2. Примером каких взаимоотношений является борьба растений за свет?
  - А) антибиоз:
    - В) симбиоз:

Е) комменсализм.

С) нейтрализм;

- D) паразитизм;
- 3. Примером каких взаимоотношений является взаимовлияние низших грибов и бактерий?
  - А) антибиоз:
- В) симбиоз;

С) нейтрализм;

- D) паразитизм;
- Е) комменсализм.
- 4. Примером какой формы взаимоотношений является взаимодействие бобовых растений и азотфиксирующих бактерий?
  - А) мутуализм:
- В) соседство:
- С) сотрапезничество;

- D) паразитизм;

  - Е) все ответы неправильные.
- 5. Примером каких взаимоотношений является сосуществование муравьев и жгутиковых?
  - А) мутуализм;
- В) соседство:

С) сотрапезничество;

- D) паразитизм;
- Е) все ответы неправильные.

#### IV. Заполните следующую таблицу.

Таблица 25

| Виды биотнческих<br>связей | Формы биотических<br>связей | Пояснения<br>(на примерах) |
|----------------------------|-----------------------------|----------------------------|
| I                          | ΙŞ                          |                            |
| 11                         | 11 ≰                        |                            |
| III                        | m₹                          |                            |

V. Поразмышляйте вместе с товарищами о полезных и вредных сторонах паразитизма и хишничества.

### § 28. БИОТИЧЕСКИЕ ФАКТОРЫ СРЕДЫ

К биотическим факторам относятся все существующие на нашей 'планете, взаимовлияющие и взаимосвязанные друг с другом живые организмы — микроорганизмы, растения, животные и человек.

Взаимоотношения организмов. Эти взаимоотношения можно подразделить в основном на три вида.

- 1. *Нейтрализм* проживающие совместно организмы не оказывают никакого влияния друг на друга.
- 2. *Антибиоз* из двух организмов, проживающих совместно, один или оба находятся под отрицательным воздействием.
- 3. *Симбиоз* из двух организмов, проживающих совместно, один или оба получают пользу от совместного проживания.

В связи с тем, что антибиотические и симбиотические связи имеют большое значение в естественном отборе, рассмотрим их подробнее.

*Антибиоз* — это антагонистические отрицательные связи, среди которых можно выделить следующие формы.

- 1. Взаимная конкуренция.
- 2. Паразитизм.
- 3. Хищничество.

Взаимная конкуренция организмов. Единственным и основным источником энергии у растений, в отличие от животных, является фотосинтез. Именно поэтому конкуренция у растений проявляется в первую очередь в их «борьбе за свет». У тенелюбивых растений механизмы фотосинтеза возникали даже при незначительной освещенности.

У растений существует также конкуренция за пищевые ресурсы. При недостатке пищи проживающие совместно растения и животные оказывают вредное воздействие друг на друга. Такая форма конкуренции была хорошо изучена русским ученым Г. Ф. Гаузе. Выращивая два вида инфузорий в одинаковых условиях и в одинаковой среде, он установил, что через некоторое время из них остались инфузории только одного вида. При этом инфузории обоих видов не оказывали друг на друга никакого вредного влияния, только интенсивность размножения у них была различной.

Таким образом, во взаимной конкуренции двух организмов, проживающих в одинаковых условиях и питающихся одинаковой пищей, побеждает тот, который быстрее размножается.

При другой форме конкуренции одни организмы под влиянием синтезируемых ими химических веществ препятствуют росту и размножению других. Например, грибы под влиянием антибиотиков, вырабатываемых ими, останавливают рост микроорганизмов.

Паразитизм является формой взаимоотношений организмов различных видов, при которой один организм (паразит) использует другой организм (хозяина) в качестве среды обитания и источника пищи. Паразиты могут приспосабливаться к жизни в различных органах животных (в коже, внутренних органах, крови, лимфатической жидкости и др.). У них развиваются различные приспособления — присоски, особый ротовой аппарат, крючья и т.д., — позволяющие им вести паразитический образ жизни. В организме хозяина также вырабатываются различные механизмы защиты против всех паразитов.

Между растениями и фитофагами (растительноядными организмами), в том числе между растением и его паразитом, также наблюдаются сложные взаимоотношения. У растений могут вырабатываться химические вещества, убивающие их паразитов. Так, при поражении грибами или бактериями растения вырабатывают против них антибиотик, называемый фитоалексином.

Хищничество — это такая форма взаимоотношений, при которой один организм, нападая на свою жертву, использует ее в качестве источника пищи. Эти взаимоотношения в большинстве заканчиваются гибелью жертвы.

Симбиоз — положительные взаимосвязи, которые имеют следующие основные формы.

- 1. Мутуализм.
- 2. Соседство (синойкия).
- 3. Сотрапезничество (комменсализм).

Мутуализм (от лат. mutuus — взаимно) — одна из форм биологического взаимодействия, при которой совместное проживание является полезным для обоих организмов. В качестве примера мутуализма можно привести взаимоотношения между грибами и водорослями, бобовыми растениями и азотфиксирующими бактериями, деревьями и почвенным грибом-микоризой.

Грибы-микоризы поставляют растениям через их корневую систему фосфор и минеральные вещества, в свою очередь, грибы получают из корней деревьев углеводы и другие органические вещества. В кишечнике лесных муравьев живут одноклеточные жгутиковые простейшие животные. Муравьи питаются древесиной деревьев, но в их кишечнике нет ферментов, расщепляющих древесину. Эту задачу выполняют одноклеточные жгутиковые. Муравьи не могут жить без жгутиковых, а жгутиковые могут жить только в кишечнике муравьев.

Синойкия (соседство; от nam. sin — вместе + oikos — дом) — форма биологического взаимодействия, которая выгодна только для одного из двух организмов, другой же организм не получает от этого

взаимодействия никакой пользы. Например, одна из пресноводных рыб откладывает свои яйца в мантийную полость двустворчатой мягкотелой беззубки. Яйца рыбы не наносят никакого вреда беззубке и защищены ее створками. Рыбы используют мягкотелое животное в качестве места проживания.

Комменсализм (сотрапезничество; от франц. commencal — сотрапезник) — форма биологического взаимодействия, при которой один организм, не нанося никакого вреда другому, использует его как источник пищи и место проживания. Например, в ротовой полости человека проживает один из видов амёб — ротовая амёба, которая питается остатками пищи в полости рта и не оказывает никакого вредного воздействия.

Мелкие рыбы живут, прикрепляясь к телу крупных рыб, и пользуются ими для передвижения. Они питаются отходами этих рыб.

Указанные взаимоотношения организмов наблюдаются в любых популяциях. Численность организмов в популяциях зависит не только от абиотических факторов, но и от числа хищников и паразитов, соперничества между организмами за пищу, места обитания и размножения. Вот почему хищники и паразиты в общем полезны для популяций. Например, увеличение численности животных в результате истребления хищников приводит к нехватке пищи, распространению среди них заразных заболеваний и гибели животных. Очищая популяции от слабых и болезненных организмов, хищники и паразиты способствуют улучшению их генофонда.

# Задания

- I. Прочитайте текст § 29.
- II. Ответьте на вопросы.
  - 1. Что вы понимаете под экологическим критерием вида?
  - 2. Объясните, почему вид является единой целостной системой.
  - 3. Какие вы знаете основные показатели, характеризующие популяцию?
  - 4. Какие вы знаете ограничивающие факторы, оказывающие влияние на популяцию?
  - 5. Какими показателями измеряется плотность популяций?
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Что наблюдается при увеличении плотности популяций?
    - А) каннибализм:
    - В) возрастание смертности молодых особей;
    - С) увеличение мертворождаемости;
    - D) в с е ответы дополняют друг друга;
    - Е) н е т правильного ответа.
  - 2. Оказывает ли влияние на эмиграцию мышей увеличение их численности?
    - А) не оказывает никакого влияния;

- В) уменьшает эмиграцию;
- С) усиливает эмиграцию;
- D) все ответы дополняют друг друга;
- Е) нет правильного ответа.
- 3. Определите примеры сезонных периодических изменений численности популяций.
  - А) изменение численности лягушек;
  - В) изменение численности саранчи;
  - С) рост числа бактерий, возбуждающих инфекционные кишечные заболевания:
  - D) A и В ; E) В и С.
- 4. От чего зависит возрастной состав популяции?
  - А) от средней продолжительности жизни особей;
  - В) от срока полового созревания;
  - С) от интенсивности размножения;
  - D) все ответы правильные;
  - Е) нет правильного ответа.
- 5. Определите примеры периодического изменения численности популяций в определенные годы.
  - А) изменение численности лягушек;
  - В) изменение численности саранчи;
  - С) рост числа бактерий, возбуждающих инфекционные кишечные заболевания:
  - D) A и B ; E) Ви C.
- IV. Изучите и объясните рис. 65.
- V. Объясните однокурсникам следующие свойства популяций.
  - 1. Плотность.
  - 2. Численность.
  - 3. Возрастной состав.

# § 2 9 . ЭКОЛОГИЧЕСКОЕ ОПИСАНИЕ В И Д А И ПОПУЛЯЦИИ

Существует много критериев вида. К числу основных из них, кроме морфологических и генетических, относятся экологические.

Под экологическим критерием понимают совокупность всех экологических факторов, воздействующих на вид в среде его обитания. У каждого вида в процессе эволюции формируются механизмы приспособления к условиям среды обитания. Например, медведи с густым шерстяным покровом приспособлены к жизни в суровых климатических условиях севера, верблюды, сайгаки и джейраны — к жизни в маловодных и песчаных пустынях. Такие приспособления обычно присущи всем особям данного вида. Каждый вид имеет свой ареал обитания. Независимо от того, большие или малые территории занимает ареал, особенности среды для этого ареала общие.

Независимо от того, большой или маленький ареал занимает вид, из большого или малого числа популяций он состоит, он представляет собой единое целое. Целостность вида связана с наличием у его особей явления *панмиксии* (свободного скрещивания). Кроме того, в процессе исторического развития среди особей одного вида возникали также определенные приспособления. Примером этих приспособлений могут служить забота о потомстве, общение между собой посредством определенных сигналов, совместная защита от врагов.

Одним из механизмов, обеспечивающих целостность вида, является изоляция его от других видов. В процессе приспособления разных видов к жизни в неодинаковых экологических условиях различия между ними будут все больше увеличиваться. Например, деревенские и городские стрижи представляют собой два очень близких друг к другу вида, которые относятся к одному роду. Они не могут скрещиваться между собой, так как имеют морфологические, генетические. физиологические. этологические и экологические различия. Значение экологического приспособления вида может быть различным для отдельных его особей и для вида в целом. Так, некоторые виды птиц при экологически неблагоприятных условиях, в данном случае при тесноте гнезда, выбрасывают из него часть своих птенцов. Выброшенные птенцы погибают, но те, которые остались в просторном гнезде, вырастут теперь более крепкими и жизнеспособными. Такие приспособления вредны для отдельных особей, но полезны для вида в целом.

Виды, занимающие обширные территории, распределяются на них неравномерно, и особи их живут отдельными группами или популяциями. Популяции представляют собой элементарную структурную единицу вида и эволюции.

Популяция характеризуется такими статистическими признаками, как плотность, рождаемость, смертность, возраст, половой состав особей и пространство, которое они занимают.

Плотность популяции измеряется числом особей данного вида на единице площади или в единице объема или биомассой. Например, 100 деревьев на 1 га, 10000 голов или 1000 кг рыбы в бассейне площадью 1 га, 1 млн бактерий в 1 л воды и т.д. Численность особей популяции может быть различной. Но если она меньше некоторого критического предела, это может привести к постепенному вымиранию популяции.

Один из важных показателей популяции — изменение численности ее особей. Этот показатель определяется числом рождений и смертей в течение определенного времени. Данное понятие широко

применяется при демографическом анализе популяции человека. Численность популяций может иметь сезонные и годичные циклические колебания. Так, в наших условиях резкое увеличение численности бактерий и глистов, вызывающих заразные кишечные заболевания, в жаркие летние дни приводит к их широкому распространению. Установлены циклические изменения численности лягушек, жаб, полевых мышей, саранчи по отдельным годам.

Изучение циклических колебаний довольно сложно, так как это требует проведения наблюдений в течение ряда лет. Во многих случаях циклические колебания можно моделировать в лабораторных условиях. Воздействуя в лабораторных условиях на животных, имеющих короткий жизненный цикл (дрозофила, мыши, крысы), различными факторами, можно собрать достаточное количество данных.

В результате простых опытов на мышах, проведенных учеными Висконсинского университета, установлено, что на состояние популяции большое влияние оказывает количество пищи. При ежедневном кормлении мышей одинаковым количеством зерна наблюдалось сначала увеличение числа особей в популяции. Это, в свою очередь, приводило к нехватке пищи. В результате отдельные особи были вынуждены перебраться в другое место (эмигрировать). Как видно из этого опыта, пища является фактором, ограничивающим размножение мышей, а возрастание эмиграции — фактором, сохраняющим равновесие популяции (рис. 65, а).

Второй опыт проводился в других условиях, при которых мыши имели достаточное количество пищи, но не могли перебраться (эмигрировать) в другое место. В результате постоянного увеличения численности популяции мышам стало тесно жить в одном месте, они начали поедать друг друга (каннибализм), не заботились о потомстве. Смертность молодых особей достигла 100% (рис. 65, 6) в природных популяциях.

Таким образом, количество пищи является фактором, обусловливающим рождаемость, эмиграцию, взаимоотношения особей и в целом численность популяции мышей. На состояние популяции значительное влияние оказывает также региональная (территориальная) особенность.

Каждая популяция стремится занять территорию, обеспечивающую ее проживание и размножение. Многие животные помечают свою территорию, на которой они питаются и устраивают норы, и защищают ее от других популяций и отдельных особей.

Региональность имеет положительное значение и считается одним из факторов, ограничивающих чрезмерное увеличение популяции на отдельных территориях.

#### а) Количество пищи и воды достаточное



б) Количество пищи и воды достаточное

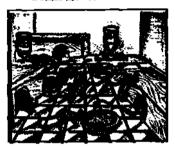



Рис. 65. Опыт показывает, что количество пищи является ограничивающим фактором.

На динамику популяций большое влияние оказывают и формы *соперничества* между различными популяциями одного вида и между популяциями, относящимися к различным видам.

В природных условиях более всего сохраняются конкурентоспособные популяции и полностью исчезают те популяции, которые не выдержали соперничества.

Случайные явления — пожары, наводнения, резкие изменения погоды, ураганы, землетрясения — оказывают сильное воздействие на малочисленные популяции. В таких популяциях рождаемость часто не может перекрыть смертность, и в течение нескольких лет они вымирают.

Естественно, что популяция состоит из особей различного пола и возраста. Возрастной состав популяции зависит от средней продолжительности жизни ее особей, времени наступления половой зрелости, интенсивности размножения. В зависимости от соотношения

молодых и старых особей в популяции различают стабильные, растущие и убывающие популяции.

Возможность охоты на птиц, пушных зверей и рыб устанавливается по соотношению численности молодых и старых особей.

Знание закономерностей развития естественных популяций имеет большое значение в разумной регуляции их численности.

# Задания

- I. Прочитайте текст § 30.
- II. Ответьте на вопросы.
  - 1. Каковы причины снижения численности и исчезновения видов?
  - 2. Для чего издается «Красная книга»?
  - 3. Какие в и д ы заносятся в «Красную книгу»?
  - 4. Какие вы знаете меры предупреждения исчезновения видов?
  - 5. Что вы знаете о «Красной книге» Республики Узбекистан?

- III. Определите правильные ответы в тестовых заданиях.
  - 1. Найдите класс позвоночных на территории Узбекистана, самый богатый в видовом отношении.
    - А) млекопитающие;
- В) птицы;
- С) рыбы;

- D) земноводные;
- Е) пресмыкающиеся.
- 2. Среди приведенных определите исчезнувшие виды.
  - А) амурский тигр, туранский тигр;
  - В) мамонт, гепард;
  - С) пещерный лев, пещерный медведь;
  - D) стеллерова корова, костромской крупный рогатый скот;
  - Е) все перечисленные виды.
- 3. К какой категории «Красной книги» можно отнести виды, биология которых изучена недостаточно?
  - A) I; B) II; C) III; D) IV; E) V.
- 4. В каком году был издан том «Красной книги» о животных?
  - A) 1949; B) 1966; C) 1975; D) 1983; E) 1984.
- 5. Укажите современные методы сохранения генофонда.
  - А) гибридизация видов;
  - В) скрещивание далеких видов;
  - С) использование партеногенетического метода;
  - D) криоконсервация и создание банка генов;
  - Е) все ответы дополняют друг друга.
- IV. Обсудите с однокурсниками значение создания банка генов и геномов
- V. Заполните таблицу.

Таблица 26

| Категории «Красной книги» | Разъяснение категорий |  |
|---------------------------|-----------------------|--|
| I                         |                       |  |
| II                        |                       |  |
| III                       | <del></del>           |  |
| IV                        |                       |  |
| v                         | ·                     |  |

# § 30. ОХРАНА ВИДОВ

Появление видов и их вымирание — естественный процесс эволюции, который зависит от изменения геологических условий на Земле. Однако с появлением человека ход данного естественного процесса нарушился и начался процесс антропогенного (под воздействием человека) исчезновения животных и растений. В результате освоения человеком новых территорий, островов и континентов наблюдается процесс все большего убывания фауны и флоры в масштабах всей планеты.

Вымирание видов началось еще в древние времена. Десятки тысяч лет назад древними охотниками были истреблены мамонты, шерстистые носороги, гигантские олени, пещерные львы и медведи, а в средние века исчезла стеллерова корова. Процесс исчезновения видов в наши дни продолжается с большей интенсивностью. В период с 1600 по 1975 год исчезли 63 вида и 44 подвида млекопитающих, 74 вида и 87 подвидов птиц. В последнее время ежегодно исчезают от 1 до 10 видов животных и по 1 виду растений. В настоящее время около 600 видов позвоночных животных и очень большое количество видов растений находятся под угрозой полного исчезновения.

Сокращение численности видов происходит в результате нарушения экологического баланса в местах обитания, чрезмерного истребления (промысла), непрерывного сокращения количества пищи, истребления в целях защиты сельскохозяйственных объектов. Численность многих видов сократилась в результате действия на них пестицидов, гербицидов и других ядовитых веществ, широко применяемых в сельском хозяйстве.

Загрязнение среды продуктами нефтяной и газовой промышленности также губит многих птиц в местах, куда просочилась нефть, и там, где есть газовые факелы.

Угроза все большего вымирания растительных и животных видов вызывает необходимость разработки и внедрения в масштабах страны и всего мира действенных мер по их охране. В 1948 году был образован Международный союз охраны природы и природных ресурсов (МСОП). Эта организация координирует все мероприятия, направленные на защиту флоры и фауны, издает «Красную книгу» редких и исчезающих видов и ведет учет уже исчезнувших и исчезающих видов. На основе данных о редких и исчезающих видах, собранных МСОП начиная с 1949 г., в 1966 г. была издана международная «Красная книга». В эту книгу были занесены 321 вид млекопитающих, 485 видов птиц, 141 вид пресмыкающихся, 41 вид земноводных и 194 вида рыб.

Правительства стран, на территории которых имеются виды, занесенные в «Красную книгу», обязаны охранять их и в известной степени нести моральную ответственность за них перед всем человечеством. Многие страны издают сегодня свою «Красную книгу» и ведут учет видов, подлежащих защите на своих территориях.

Издана и «Красная книга» Узбекистана в двух томах. Первый том опубликован в 1983 г. и посвящен позвоночным животным, а второй том, в котором приводятся данные о растительном мире, — в 1984 г.

По указанию  $MCO\Pi$  заносимые в «Красную книгу» виды подразделяются на пять категорий.

- I. Исчезающие виды, которые можно еще спасти с помощью специальных мер.
- II. Редкие, пока еще многочисленные виды, численность которых ежегодно сокращается и которые могут исчезнуть в ближайшие годы.
- III. Редкие виды, которые пока не находятся под угрозой исчезновения, но являются малочисленными или распространены на небольших территориях. Они могут исчезнуть в результате естественного или антропогенного изменения среды.
- IV. Виды, биология которых недостаточно изучена. Их численность и состояние не внушают беспокойства, но они заносятся в «Красную книгу» ввиду недостаточности данных о них.
- V. Виды, восстановленные в результате принятия специальных мер, состояние которых не внушает опасения. Однако промысел их еще невозможен и необходим постоянный контроль над их популяциями.

Существующие на Земле виды — результат длительного и постепенного, продолжавшегося миллионы лет, эволюционного процесса. Каждый вид — часть экологической системы. Следует помнить, что даже те виды, которые кажутся нам крайне вредными, также имеют свое место в экологической системе. Так, комары, наряду с вредным воздействием, вызывающим различные заболевания, служат источником питания для птиц, а их личинки — кормом для рыб. Различные дикие животные и растения являются ценным источником для селекции домашних животных и культурных растений.

Природные условия Узбекистана многообразны (имеются пустыни и степи разных типов, горные пустыни и альпийские луга, горные леса, тугаи, водные бассейны, обширные культурные ландшафты), поэтому богат и его животный и растительный мир. На территории Узбекистана обитают 650 видов позвоночных, из них 79 видов рыб, 3 вида земноводных, 37 видов пресмыкающихся, 410 видов птиц и 99 видов млекопитающих.

В «Красную книгу» Узбекистана занесены 63 вида позвоночных, в том числе 22 вида млекопитающих, 31 вид птиц, 5 видов и подвидов пресмыкающихся и 5 видов рыб. В Узбекистане полностью исчезли туранский тигр, гепард, которые не так давно обитали здесь. В 2003 г. опубликован второй том «Красной книги», посвященный животным, в который вошли 184 вида животных. Численность растений, подлежащих внесению в «Красную книгу», постоянно возрастает. В Узбекистане произрастает более 4500 диких растений, около 10—12% из них нуждается в охране. Если в «Красную книгу» Узбекистана, изданную в 1984 г., было занесено 163 вида растений,

то в «Красной книге», опубликованной в 1998 г., число нуждающихся в охране растений составило 301.

Одним из наиболее эффективных способов охраны редких и исчезающих видов является создание заповедников, национальных парков, ботанических садов и зоопарков. Эти мероприятия играют важную роль и в экологическом воспитании населения. Несмотря на принимаемые меры в настоящее время не представляется возможным сохранить отдельные исчезающие виды, поэтому предпринимаются попытки сохранить их гены (создание банка геномов). Для этой цели используются методы консервации семян или спор растений, половых, соматических клеток и тканей животных. Самым эффективным среди них является метод замораживания — криоконсервации.

В результате развития генетической инженерии появилась возможность выделения ценных генов исчезающих животных и растений, введения их в бактериальную клетку и создания таким путем банка генов.

Наследственную информацию, сохраняемую в настоящее время в законсервированном виде или в виде банка генов, можно впоследствии размножить и использовать для восстановления этих видов.

Охрана окружающей среды имеет большое значение не только для фауны и флоры, но также и для самого человека, так как его здоровье непосредственно связано с чистотой окружающей среды. Вот почему очень важно не загрязнять питьевую воду, уменьшать применение ядовитых химических веществ в сельском хозяйстве и снижать загрязнение атмосферы в городах. Все граждане нашей страны обязаны соблюдать закон «Об охране окружающей среды и рациональном использовании природных ресурсов».

# Задания

- I. Прочитайте текст § 31.
- П. Ответьте на вопросы.
  - 1. Дайте определение понятия экологической системы.
  - 2. Какие основные показатели биогеоценоза вы знаете?
  - 3. Какие составные части биогеоценоза вы знаете?
  - 4. Дайте объяснение п и щ е в ы х ц е п е й и трофических уровней.
  - 5. Дайте объяснение правила экологической пирамиды.
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Продуценты это организмы...
    - А) потребляющие готовые органические вещества;
    - В) вырабатывающие органические вещества;
    - С) разлагающие органические вещества;
    - D) гетеротрофные;
    - Е) все ответы дополняют друг друга.

- 2. Консументы это организмы...
  - А) потребляющие готовые органические вещества;
  - В) вырабатывающие органические вещества;
  - С) разлагающие органические вещества;
  - D) гетеротрофные;
  - Е) все ответы дополняют друг друга.
- 3. Редуценты это организмы...
- А) потребляющие готовые органические вещества;
- В) вырабатывающие органические вещества;
- С) разлагающие органические вещества;
- D) гетеротрофные;
- Е) все ответы дополняют друг друга.
- 4. Что составляет основу экологической пирамиды?
  - А) травоядные животные;
  - В) разлагающие организмы; С) вырабатывающие организмы;
  - D) A и B ; E) A и C.
- 5. К какой части биогеоценоза относятся грибы и бактерии?
- А) к продуцентам;
- В) к консументам;
- С) к редуцентам;
- D) все ответы правильные;

- Е) А и В.
- IV. Изучите и объясните рис. 66—68.
- V. Заполните таблицу.

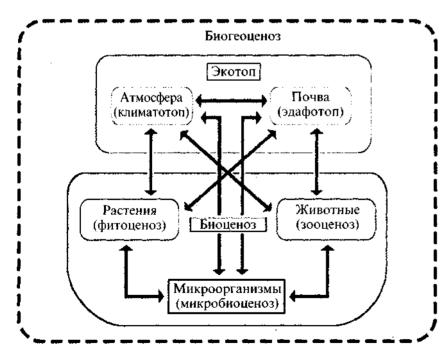
Таблица 27

| Основные составные части<br>бногеоценоза | Пояснения к ним<br>(на примерах) |  |
|------------------------------------------|----------------------------------|--|
| I.                                       |                                  |  |
| 2.                                       |                                  |  |
| 3.                                       | <del>-</del>                     |  |

# § 3 1 . БИОГЕОЦЕНОЗЫ И ИХ ОСОБЕННОСТИ. ПИЩЕВЫЕ ЦЕПИ И ЭКОЛОГИЧЕСКИЕ ПИРАМИДЫ

Популяции различных видов, обитающие в одном общем ареале, составляют экологическое сообщество. Живые организмы, находясь под воздействием других организмов и неживой природы, в свою очередь, оказывают на них влияние.

Популяции организмов, связанных как между собой, так и с окружающей средой, называются *биогеоценозами*. Другими словами, биогеоценоз — часть земной поверхности, где располагается комплекс, состоящий из взаимосвязанных биотических и абиотических элементов.


Биологическая часть биогеоценоза представлена микроорганизмами, растениями и животными и называется биоценозом. Био-

ценоз состоит из растений (фитоценоз), животных (зооценоз) и микроорганизмов (микробиоценоз). Абиотическая часть биогеоценоза — это часть суши или водного бассейна с определенными климатическими условиями. Называется она экотопом. Экотопы представлены атмосферными (климатотоп) и почвенными (эдафотоп) факторами (рис. 66).

Понятие биогеоценоза было предложено в 1940 г. академиком В. Н. Сукачевым. Биогеоценозы характеризуются: 1) видовым многообразием; 2) плотностью особей каждого вида; 3) биомассой (общее количество органического вещества в биогеоценозе) и другими показателями.

Так как жизненные процессы в биогеоценозе обеспечиваются энергией, поступающей извне, он рассматривается как открытая, саморегулирующаяся система, которая находится в состоянии равновесия.

Стабильность биогеоценоза обеспечивается круговоротом веществ (постоянным переходом веществ из неживой природы в живую, а из живой в неживую). Источником энергии при этом является Солнце, энергия которого в процессе круговорота превращается в энергию химических связей веществ, а затем в механическую и тепловую.



Р и с. 66. Схема биогеоценоза.

В зависимости от характера питания и способа получения энергии все организмы в биогеоценозе разделяются на две группы: аутотрофы и гетеротрофы. Аутотрофы представлены в основном растениями, которые, усваивая солнечную энергию, синтезируют сложные органические вещества из простых неорганических в процессе фотосинтеза. К гетеротрофам относятся животные, люди, грибы и бактерии. Они питаются готовыми питательными веществами и в процессе своей жизнедеятельности разлагают сложные питательные вещества на более простые. В свою очередь, простые соединения возвращаются в природу и вовлекаются аутотрофами в круговорот веществ.

Биоценоз состоит из следующих основных частей: 1) продуценты (вырабатывающие, образующие); 2) консументы (потребляющие); 3) редуценты или деструкторы (разлагающие, разрушающие).

Продуценты являются аутотрофными организмами и представлены зелеными растениями на суше и в воде. Часть синтезируемых органических веществ потребляется консументами-гетеротрофами, травоядными животными. Последние, в свою очередь, служат пищей для плотоядных животных и для человека.

Редушенты также являются гетеротрофами. Они в основном представлены микроорганизмами, которые, разлагая мертвые тела животных и растений, превращают их органические вещества в простые, неорганические. Большая часть органических веществ не разлагается сразу, а сохраняется в виде древесных, почвенных и водных осадочных отложений. Сохраняясь в течение многих тысячелетий, эти органические вещества превращаются в ископаемое топливо (уголь, торф и нефть). Ежегодно на Земле фотосинтезирующие организмы синтезируют около 100 млрд т органических веществ. На протяжении геологического периода (1 млрд лет) преобладание процесса синтеза органических веществ над процессом их разложения привело к уменьшению содержания С0, и увеличению 0, в атмосфере. Между тем начиная со второй половины XX в. усиленное развитие промышленности и сельского хозяйства стало обусловливать неуклонное повышение содержания СО, в атмосфере. Это явление может вызвать изменение климата планеты.

**Пищевые цепи и экологические пирамиды.** Цепь, состоящая из нескольких видов организмов, где один из них служит пищей для второго, называется цепью питания, или пищевой цепью (рис. 67).

Пищевая цепь — это переход энергии растений через ряд организмов, один вид которых поедается другим. Таким образом, пищевая цепь является трофической связью между видами (от греч. trophe — питание). Различные уровни питания в экологической системе называются трофическими уровнями. Первое звено пищевой

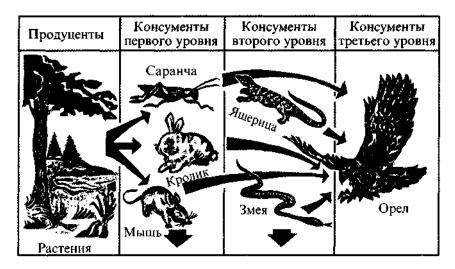



Рис. 67. Пишевая цепь.

цепи представлено аутотрофными растениями (продуцентами). В процессе фотосинтеза они превращают солнечную энергию в энергию химических связей.

К продуцентам можно отнести также хемосинтезирующие организмы. Второе звено образуется травоядными (первичные потребители) и плотоядными (вторичные потребители) животными, или консументами. Третье звено пищевой цепи составляют микроорганизмы, которые расщепляют органические вещества до минеральных веществ (редуценты). Второе и третье звенья считаются гетеротрофными организмами. Пищевые цепи в природе образуются обычно из трех-четырех уровней. При переходе от одного уровня к другому количество энергии и биомассы уменьшается примерно в десять раз, так как 90% полученной энергии расходуется на обеспечение жизнедеятельности организмов и лишь 10% — на построение тела организмов. Поэтому на каждом последующем уровне численность особей также прогрессивно уменьшается. Например, если животное поедает 1000 кг растений, то масса его увеличится в среднем на 100 кг. Биомасса хищника, поедающего травоядное животное такой массы, может увеличиться на 10 кг, а биомасса вторичного хищника — всего на 1 кг.

Таким образом, на пищевых уровнях наблюдается прогрессивное уменьшение вещества и энергии. Такая закономерность называется правилом экологической пирамиды (рис. 68). Экологическая пирамида является показателем соотношения числа организмов, биомассы и энергии продуцентов, консументов и редуцентов.

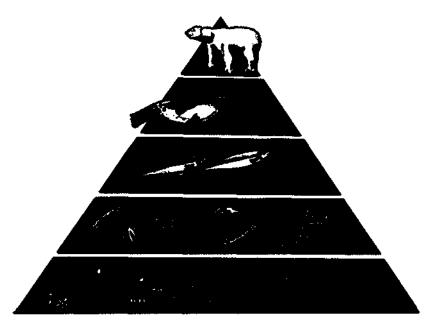



Рис. 68. Упрощенная экологическая пирамида.

Основание пирамиды образуют аутотрофные организмы — продуценты, выше располагаются травоядные животные, еще выше — хищники, а на вершине пирамиды находятся крупные хищники.

Типичный пример пищевых цепей водных бассейнов: фитопланктон — зоопланктон — мелкие рыбы — крупные хищные рыбы. В данной цепи также происходит уменьшение количества биомассы и энергии согласно правилу экологической пирамиды.

В искусственных сельскохозяйственных экосистемах также имеет место уменьшение количества энергии до 10 раз на каждом последующем уровне пищевых цепей.

Одна из наиболее важных особенностей биогеоценоза — саморегуляция. Саморегуляция — это способность естественной системы восстанавливать свои свойства после воздействия на нее каких-либо природных или антропогенных факторов. Ярким примером саморегуляции служит биогеоценоз в широколиственном лесу. Здесь проявляется конкуренция растений за жизненное пространство, за свет и воду.

В биогеоценозах такого типа наблюдается явление ярусности, т. е. расположение сообщества растений в несколько рядов по вертикали.

Первый ярус образован светолюбивыми древесными растениями (ясень), второй — менее светолюбивыми деревьями (клен, рябина), третий — различными кустарниками (калина) и четвертый —

травянистыми растениями (папоротники, мальва, хвощи и др.). хj<sub>e</sub>ниже ярус, тем более теневыносливы произрастающие там **растения**: Корни растений верхних ярусов глубоко уходят в почву.

В широколиственном лесу освещенность подвергается колеба« ниям в течение года. Поэтому растения нижних ярусов весной развиваются и цветут рано, до появления листьев на деревьях. В биогео-'. ценозах любого типа наблюдаются изменения, связанные склиматическими ритмами. Так, в результате понижения температуры, сокращения длительности светового дня и изменения влажности осенью многие растения сбрасывают листву. В их запасающих органах накапливаются питательные вещества, надеревьях формируются пробки. В цитоплазме их клеток начинает именьшаться содержание воды. Животные также активно готовятся с име: птицы улетают на юг, у млекопитающих начинается линька, они запасают пищу на зиму.

Биогеоценозы — продукт природных процессов, протекающих на протяжении долгих лет. Например, в связи с отсутствием почвы в горных породах, образованных в результате извержения вулканов, на них нет никакой растительности. Образование почвы в таких 'местах объясняется появлением здесь лишайников и водорослей. На; таких почвах постепенно начинают произрастать мхи, папоротники, травы, кустарники и деревья, формируется стабильный биогеоценоз. '••

Процесс образования биогеоценоза или смены **одного** .>' биогеоценоза другим называется *экологической сукцессией* (от *лат.* succeesio — перемена места).

Сукцессию леса на суше можно охарактеризовать следующим \$. образом: голая земля — лишайники — водоросли — мхи — папо-ротники — травы — кустарники — деревья (лес) — климакте-рический биоценоз.

Сукцессии могут быть первичными и вторичными. *Первичная* < сукцессия — это постепенное развитие биогеоценоза в местах, где нет; жизни. *Вторичная сукцессия* — это развитие нового биогеоценоза на месте старого, разрушенного в результате пожара, засухи, вырубки > лесов и других причин.

Стабильный самообновляющийся биогеоценоз, находящийся в равновесии со средой, называется *климактерическим* (от *греч*. kh-.  $\max$  — лестница).

С изменением среды один биогеоценоз может смениться другим. - Например, после пожара на месте лесного биогеоценоза возникает луговой.

Смена биогеоценозов часто может быть связана с деятельность: человека. В результате осушения болот болотный **биогеоцено** заменяется луговым или агроценозом.

# Задания

#### I. Прочитайте текст § 32, изучите рис. 69−73.

#### П. Ответьте на вопросы.

- 1. Объясните особенности экосистем Центральной Азии.
- 2. Расскажите о путях повышения продуктивности агроэкосистем.
- 3. Объясните сходства и различия искусственных и естественных экосистем.
- 4. Какие вы знаете пути повышения продуктивности естественных экосистем?

#### III. Определитеправильные ответы в тестовых заданиях.

- 1. Определите искусственную экосистему.
  - А) озера:
- В) болота;
- С) биофиты установки для биологической очистки воды;
- D) заросли;E) водоемы.
- 2. Определите естественную экосистему.
  - А) биофиты: В) космический корабль, управляемый человеком:
  - С) горшок с цветком; D) аквариум; E) болото.
- 3. Определите основной ограничивающий фактор в пустынных экосистемах на территории Центральной Азии.
  - А) температура; В) влажность;
  - С) высокое атмосферное давление;
  - D) ветер; E) свет.
- Определите ограничивающий фактор орошаемых пустынных экосистем.
  - А) температура; В) свет; С) влажность;
  - D) засоленность почвы; E) все ответы правильные.
- 5. В ч е м состоит отличие агробиоценозов от естественных экосистем?
  - А) многочисленность видов;
  - В) устойчивость видов;
  - С) энергия, расходуемая человеком:
  - Б)АиС; Е)ВиС.

#### IV. Заполните таблицу, используя также материал предыдущей темы.

Таблица 28

| Экосистемы | Сходства | Различия |
|------------|----------|----------|
| I.         |          |          |
| II.        |          |          |

# V. Обсудите с однокурсниками различия между биогеоценозом и экосистемой.

#### § 3 2. ЕСТЕСТВЕННЫЕ И ИСКУССТВЕННЫЕ ЭКОСИСТЕМЫ

Экосистема (от греч. oikos — место проживания + systema — целое) — совокупность организмов различных видов и среды, связанных между собой потоками веществ, энергии и информации. Понятие экосистемы было введено в науку в 1935 г. А. Тенсли. Несмотря на то, что экосистема и биогеоценоз используются как одно и то же понятие, экосистемы по своим размерам и сложности отличаются разнообразием. В то время, как биогеоценозы имеют определенные четкие границы, обозначить границы экосистем очень трудно. Примером малых экосистем могут служить капля воды с микробами, гниющий пень со своими микроорганизмами, грибами и мелкими позвоночными животными. Самая большая экосистема - биосфера. В состав экосистемы могут входить несколько биогеоценозов.

Таким образом, экосистема представляет собой более широкое понятие по сравнению с биогеоценозом. Любой биогеоценоз — это экосистема, но не каждую экосистему можно назвать биогеоценозом.

Различают естественные и искусственные экосистемы. Примерами *естественных экосистем* могут служить пруды, моря, луга, заросли, леса.

Биогеоценозы со своеобразным растительным миром и ландшафтом тесно связаны с географической зональностью. Географическая зональность обусловливает образование крупных региональных экосистем или биосистем, которые называются биомами. Примерами биомов являются тундра, тайга, леса, в том числе тропические, пустыни и степи.

К пресноводным экосистемам относятся озера, реки и болота. Такие экосистемы, занимающие огромные территории, являются средой обитания пресноводных организмов, источником питьевой воды, водными резервами орошаемых земель.

К морским экосистемам, кроме открытых морей, которые занимают 70% площади Земли, относится также прибрежный континентальный шельф. Такие экосистемы характеризуются многообразием растений и животных, обилием планктона и бентоса (взвешенные в воде и донные микроорганизмы), простейших животных и низших водорослей. В континентальных шельфах развито в основном промысловое рыболовство. Морские лиманы — бухты и устья рек — очень богаты рыбой и другими морскими организмами.

Экосистемы Центральноазиатского региона. Физико-географические условия и ландшафт этого региона также очень многообразны. Северо-западные территории его представлены типичными



Рис. 69. Пустынный ландшафт.

пустынями и полупустынями и характеризуются сухим, жарким летом, очень холодной зимой и незначительным количеством осадков (рис. 69). Недостаток влаги является ограничивающим фактором биологической продуктивности. Годовое количество осадков не превышает 200 мм, и выпадают они в основном в зимне-весенний сезон.

Растения в основном представлены эфемерными видами, которые успевают закончить свой жизненный цикл в течение короткого весеннего периода. Здесь в изобилии растут верблюжья колючка, саксаул и другие кустарниковые растения пустыни. Корни у верблюжьей колючки уходят на глубину 15—20 м и достигают подземных вод.

В связи с большой концентрацией солей в подземных водах засоленных земель очень много. Животные пустыни, как и растения, хорошо приспособлены к жизни в условиях безводья. Пресмыкающиеся и мелкие грызуны пустыни имеют физиологические и этологические (поведенческие) приспособления к условиям безводья. Они не испытывают большой нужды в питьевой воде, так как в результате расщепления сухой пищи в их организме образуется метаболическая вода. Благодаря высокой концентрации мочи их организмы испаряют мало воды. У верблюдов, сайгаков и других животных пустыни развиты механизмы, обеспечивающие выносливость в условиях безводья.

Орошение пустынь позволяет создать очень плодородные площади, так как высокие температуры и обилие света здесь наиболее благоприятны для посевов. Однако при этом засоление



Рис. 70. Тугайный ландшафт.

почвы из-за усиленного испарения влаги является ограничивающим фактором. Промывание засоленных почв и обеспечение плодородия требуют дополнительного расхода воды.

На предгорных и горных территориях встречаются такие биомы, как полупустыни, сухие пустыни, тугаи, смешанные и арчовые леса, альпийские луга, а также холодные горные пустыни (рис. 70—71).

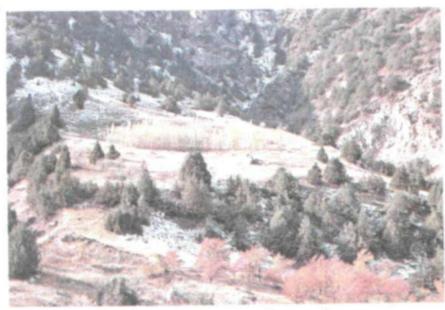



Рис. 71. Горный арчовый ландшафт.

Интенсификация сельского хозяйства, развитие горнодобывающей промышленности, вырубка арчовых лесов приводят к заметным нарушениям биомов в предгорных и горных регионах. В результате многие виды растений и животных находятся в настоящее время на грани исчезновения и поэтому занесены в «Красную книгу» Узбекистана.

Эффективными мерами охраны исчезающих видов и естественных биоценозов являются увеличение числа заповедников, расширение их территорий, создание питомников для искусственного выращивания исчезающих видов и реинтродукция (то есть возврат) их в природу.

Искусственные экосистемы являются результатом человеческой деятельности. К ним относятся агроэкосистемы, урбаноэкосистемы (городские экосистемы) и космические экосистемы. Аквариумы, горшки с цветами являются маленькой моделью различных искусственных экосистем. Среди искусственных экосистем самыми распространенными являются агроэкосистемы, представляющие собой биогеоценозы, созданные человеком (рис. 72). К агроэкосистемам относятся поля и сады.

Независимо от формы и специализации основной составной частью агроэкосистем является аутотрофная часть. В отличие от естественных экосистем, агроэкосистемы: 1) не могут саморегулироваться из-за малого числа видов в них; 2) слабоустойчивы, так как виды в них находятся под воздействием не естественного, а искусственного отбора; 3) источником энергии агроценозов служит



Рис. 72. Агробиоценоз.

не только энергия Солнца, но и энергия, расходуемая человеком на орошение, производство удобрений, эксплуатацию машин. Круговорот элементов в агроэкосистемах сопровождается вмешательством человека, так как они убираются вместе с урожаем. Для восполнения этих элементов в почву вносят минеральные и органические удобрения.

В настоящее время около 10% суши составляют пахотные земли, а 20% — пастбища. Большинство агроэкосистем Азии, Африки и Южной Америки характеризуются низким плодородием и не способны производить достаточное количество продукции для промышленных регионов. Повышение плодородия агроэкосистем требует большого расхода энергии на производство горючего, химических веществ, эксплуатацию машин. Зачастую количество затрачиваемой энергии превышает количество энергии, содержащейся в пищевых продуктах, что приводит к снижению рентабельности агроэкосистем в условиях экономического кризиса.

Искусственно создаваемые экосистемы требуют постоянного наблюдения. Агроэкосистемы, состоящие из определенного вида (например, из хлопчатника), могут приносить временную экономическую выгоду. Однако монокультура хлопчатника на очень больших площадях приводит к изменению структуры почвы, ее стерилизации, размножению вредителей и, в конце концов, к гибели экосистемы.

• Внедрение севооборотов, введение в экологическое сообщество дополнительных компонентов, например насекомоядных (энтомофагов) и опыляющих пчел, способствуют стабилизации экологической системы.



Рис. 73. Орошение культурных растений.

Для повышения плодородия таких естественных экосистем, как [устыни, луга и степи, которые являются пастбищами, можно исюльзовать посев высокоурожайных трав, удобрения и искусственюе орошение почвы (рис. 73).

Дальнейшее повышение экономической эффективности агроцеюзов требует использования индустриальных технологий обра-)Отки посевов, применения методов генной инженерии и биотехюлогии для создания новых сортов растений и их гибридов.

#### .задания

Прочитайте текст § 33.

- . Ответьте на вопросы.
  - 1. Что изучает наука экологии человека?
  - 2. Охарактеризуйте основные особенности антропоэкологических систем.
  - 3. Объясните особенности человека как экологического фактора.
  - 4. Что такое адаптивные типы человека?
  - 5. Какие адаптивные типы человека вы знаете?
  - 6. Объясните воздействие на человека городской экосистемы.
  - 7. Объясните воздействие на здоровье сельских жителей сельской экосистемы.
- I. Определите правильные ответы в тестовых заданиях.
- 1. Укажите основное отличие антропоэкосистемы от естественной экосистемы.
  - А) нетотличия:
  - В) наличие человеческого сообщества;
  - С) на антропоэкосистему абиотические факторы не влияют;
  - D) в естественной экосистеме не имеется биотических факторов;
  - Е) все ответы неправильные.
- 2. Определите своеобразие человека как экологического фактора.
  - А) сознательное воздействие на природу;
  - В) целесообразность воздействия;
  - С) сила воздействия;
  - D) только A и C;
  - Е) в с е ответы дополняют друг друга.
- 3. К какому адаптивному типу относится население, проживающее на территории Узбекистана?
  - А) тропический; В) пустынный, полупустынный, степной;
  - С) горный;
- D) A и B;
- Е) В и С.
- 4. Укажите вредные факторы, воздействующие на здоровье населения в сельских экосистемах.
  - А) недостаток ультрафиолетовых лучей;
  - В) широкое использование гербицидов и пестицидов;
  - С) широкое распространение паразитарных заболеваний;
  - D)AHC;
- Е)ВиС.

- 5. Укажите вредные факторы, воздействующие на здоровье населения в городских экосистемах.
  - А) недостаток ультрафиолетовых лучей;
  - В) широкое использование гербицидов и пестицидов;
  - С) широкое распространение паразитарных заболеваний;
  - **D)** A и C; E) **B** и C.
- IV. Обсудите с однокурсниками демографические изменения в Узбекистане.
- V. Заполните таблицу.

Таблица 29

| Адаптивные типы<br>человека | Условия формирования | Особенности |
|-----------------------------|----------------------|-------------|
| 1.                          |                      |             |
| 2.                          |                      |             |
| 3.                          |                      |             |

### § 33. ЭКОЛОГИЯ ЧЕЛОВЕКА

Наука «экология человека» изучает закономерности происхождения, жизни и развития антропоэкологических систем. Антропоэкологические системы — это сообщества людей, которые находятся в состоянии динамического равновесия с окружающей средой и удовлетворяют свои нужды через эти взаимоотношения. Основное отличие антропоэкологических систем от естественных экосистем заключается в том, что в состав антропоэкологических систем входят сообщества людей. Активность общества людей, проживающих на той или иной территории, определяется уровнем их воздействия на окружающую среду. Развивающееся общество характеризуется, наряду с увеличением народонаселения, также повышением потребностей в пищевых продуктах, в сырьевых и водных ресурсах, в размещении отходов. Это, в свою очередь, усиливает воздействие на природную среду и приводит к более интенсивному использованию биотических и абиотических факторов.

Интенсивный рост населения планеты благодаря проведению мероприятий в области здравоохранения, достижениям медицинской науки, увеличению средней продолжительности жизни людей и снижению детской смертности является основной особенностью XX в. В 1999 г. численность населения Земли достигла 6 миллиардов. Только в XX в. этот показатель увеличился на 4,4 миллиарда, из которых 1 млрд приходится на последние 12 лет XX столетия (в XIX в. численность населения возросла лишь на 0,6 млрд). Быстрый

рост численности населения еще более усиливает его антропогенное воздействие на среду (интенсивное развитие сельского хозяйства, промышленности, транспорта, расширение территорий, занимаемых городами).

В странах с высокой численностью населения осуществляются мероприятия, направленные на ограничение роста численности населения и планирование семьи (например, в Китае и Индии).

В антропоэкологических системах взаимодействие людей и природной среды происходит в двух направлениях: 1) изменяются биологические и социальные показатели отдельных индивидов и всего общества; 2) начинает изменяться и сама среда в процессе удовлетворения потребностей людей.

В изучении экологии человека большое значение имеют вопросы влияния биогеографических особенностей на биологическую изменчивость популяции людей, здоровье человека в антропоэкологических системах.

Являясь объектом воздействия экологических факторов, человек в то же время сам оказывает воздействие на среду.

Своеобразие человека как экологического фактора заключается в том, что он оказывает на природу сознательное, целенаправленное и мощное воздействие. Энергетические ресурсы любого биологического вида ограничены, поэтому он имеет ограниченные возможности влиять на природу. Зеленые растения используют энергию Солнца, другие — энергию органических веществ предыдущего звена пищевой цепи. Человек в процессе своей умственной деятельности создает очень мощные источники энергии — ядерные и термоядерные реакции. Это расширяет возможности человека, и он становится способным занимать любое экологическое пространство на планете.

Своеобразие человека как экологического фактора заключается еще и в том, что его деятельность носит активный творческий характер. Он может создавать вокруг себя искусственную среду, что также отличает его от остальных экологических факторов. Одним из основных факторов внешней среды для человека является пища, за счет которой пополняются запасы израсходованной организмом энергии, обеспечивается пластический обмен в клетках и в организме. Суточное количество энергии, необходимой для человека, составляет не менее 2500 ккал. Эта энергия пополняется за счет углеводов, жиров и белков. Основным источником белка служат легкоусвояемые продукты животного происхождения, птица и рыбные продукты.

Качество и высокая калорийность пищи зависят не только от содержания в ней белков, жиров и углеводов, но и от достаточного

количества не синтезируемых в организме витаминов. Для организма необходимы также активизирующие ферменты, белки, минеральные вещества (Na, K, Ca, Mn, P и др.), входящие в состав биологически активных веществ.

Недоедание или недостаток в пище необходимых веществ обусловливают различные функциональные нарушения в организме. Например, при недостатке в пище белка и витаминов замедляются рост и развитие организмов.

В отдаленных от океана континентальных регионах, например в Центральной Азии, во внешней среде и в составе пищи ощущается недостаток йода. В результате нарушается функция щитовидной железы. Для предупреждения таких нарушений в поваренную соль необходимо добавлять йод. Факторы природной и искусственной среды постоянно воздействуют на человека. В процессе исторического развития человечества под влиянием различных природных факторов и в результате экологической специализации народонаселения земного шара в разных районах планеты появились адаптивные (приспособленные) типы людей.

Адаптивные типы представляют собой норму биологической реакции на условия жизни и характеризуются развитием комплекса морфофункциональных, биохимических, иммунологических признаков, обеспечивающих хорошее приспособление человека к жизни в данных условиях. Питание народов, проживающих в регионах с различными климатическими условиями, характеризуется своеобразными особенностями. В связи с этим у них наблюдаются изменения в приспособлениях, связанных с синтезом, выделением и качеством пищеварительных ферментов.

Различают следующие адаптивные типы: арктический, тропический, типы зон умеренного климата, высокогорный, пустынный и полупустынный.

Арктический адаптивный тип формируется в условиях холодного климата, где в питании преобладают продукты животного происхождения. В пищеварительной системе народов Арктики развиты приспособления, связанные с недостаточным потреблением витамина С в составе растений. Характерными признаками арктического адаптивного типа являются хорошо развитая костно-мышечная система и более высокое содержание белков и жиров в крови. Более высокий уровень обмена энергии и развитие способности к терморегуляции также характерны для арктического типа.

Тропический адаптивный тип формируется в условиях жаркого и влажного климата, где в пищевом рационе содержание животных белков сравнительно невелико. Многообразие экологических

условий также оказало влияние на формирование данного типа. Вот почему население субтропических и тропических областей в расовом и этническом отношениях принадлежит к разным группам. Характерными признаками негроидов являются удлиненная форма тела, менее развитая мышечная система, длинные конечности, некоторая узость грудной клетки, обильное потоотделение за счет большого количества потовых желез и др.

Горный адаптивный тип. В формировании этого типа основным экологическим фактором выступала гипоксия (пониженное содержание кислорода в атмосферном воздухе). У жителей высокогорных районов, независимо от их расовой принадлежности, наблюдается интенсивный обмен веществ, грудная клетка у них более широкая, содержание эритроцитов в крови увеличено.

Среди населения Центральной Азии также встречаются популяции, относящиеся к горному адаптивному типу (горные районы Узбекистана, Кыргызстана и Таджикистана).

Пустынный, полупустынный, степной адаптивный тип формируется в условиях жаркого, сухого, резко континентального климата с интенсивным солнечным излучением. Для этого типа характерны усиленное выделение тепла, хорошо развитые потовые железы, обильное потребление воды. Большинство населения Центральной Азии относится к данному адаптивному типу.

Таким образом, в процессе исторического развития под влиянием экологических факторов происходила специализация человечества, которая привела к разделению его на адаптивные (приспособленные) типы с разными отличительными признаками. Адаптивные типы, независимо от их расовой принадлежности, сформировались в результате приспособления к конкретным экологическим условиям на основе приспособительных механизмов, обусловленных генофондом вида.

**Антропогенные экосистемы, их влияние на здоровье человека.** К числу наиболее важных современных антропогенных экосистем относятся города, села, транспортные коммуникации.

Изменение природной среды ярко проявляется в городах. Скопление промышленных и хозяйственных отходов приводит к увеличению содержания микроэлементов в почве, воде и растениях, высокая плотность городского населения создает условия для широкого распространения инфекционных болезней. В результате загрязнения воздуха значительная часть ультрафиолетовых лучей не Доходит до земной поверхности. Недостаточная освещенность приводит к уменьшению содержания в организме витамина Д.

Сельские экологические системы по своим особенностям значи-

тельно отличаются от городских. В сельских местностях животный и растительный мир более разнообразен. Здесь чаще встречаются инфекционные и паразитарные болезни, которые передаются животными.

Широкое применение пестицидов, гербицидов и других химических веществ в сельском хозяйстве может оказать вредное воздействие на здоровье сельского населения.

#### Выводы

- 1. Глубокое изучение закономерностей взаимодействия живых организмов между собой и со средой обитания имеет большое значение в деятельности человека, разработке путей регулирования природных процессов.
- 2. Абиотические факторы оказывают на организм комплексное влияние, характеризующееся сезонной изменчивостью и ритмическими изменениями жизненных процессов в живых организмах.
- 3. Человек в своей практической деятельности широко использует явления фотопериодизма и биоритмов.
- 4. Популяция и вид это сообщества, возникающие в эволюционном процессе под воздействием определенных экологических взаимоотношений. Знание закономерностей развития природных популяций имеет большое значение в изучении разумной регуляции численности популяций.
- 5. В настоящий период усиливается процесс исчезновения отдельных видов животных и растений под воздействием человека, что требует выработки необходимых мер по предупреждению его негативных последствий.
- 6. Охрана чистоты окружающей среды необходима не только для фауны и флоры, но и для самого человека. Здоровье человека непосредственно зависит от состояния окружающей среды.
- 7. Биогеоценоз часть земной поверхности, где располагается комплекс, состоящий из взаимосвязанных биотических и абиотических элементов. Биотическая часть называется биоценозом, абиотическая —экотопом.
- 8. В биогеоценозе в результате возникновения пищевых связей между видами энергия переходит от одного трофического уровня к другому. При этом биомасса и количество энергии постепенно уменьшаются.

#### Словарь терминов

**Абиотические факторы** — совокупность условий неорганической природы.

**Агроэкосистемы** — созданные в результате человеческой деятельности пастбища, покосные луга, поля с посевами культурных растений, искусственные леса, аллеи, сады и др.

**Адаптивный тип** — норма реакции, характеризующаяся развитием телосложения, физиологических показателей, биохимических и иммунологических свойств, обеспечивающих лучшее приспособление человека к определенным условиям жизни.

Антибиоз — антагонистические взаимоотношения организмов.

**Антропоэкосистема** — сообщество людей, которые находятся во взаимоотношениях с окружающей средой.

**Банк генов** — хранение и размножение (клонирование) отдельных генов растений и животных путем внедрения их в бактериальные клетки методами генной инженерии.

**Банк геномов** — хранение наследственной информации животных и растений в целости методом замораживания их семян, спор, половых и соматических клеток.

**Биомы** — крупные экосистемы, разделяющиеся на основе географической зональности (тундра, тайга, пустыня, степь, тропические леса).

**Биотические факторы** — факторы живой природы, которые оказывают влияние на организм и среду его обитания.

Биоценоз — биотическая часть биогеоценоза.

**Генофонд вида** — комплекс генов, встречающихся у организмов определенного вида.

Гипоксия — явление недостаточности кислорода в воздухе.

Гумус — органические вещества, полностью разложившиеся в почве.

**Демография** — наука, которая изучает численность, размножение, состав населения в зависимости от социально-экономических и культурных факторов.

**Детритофаги** — организмы, питающиеся разлагающимися органическими веществами.

**Каннибализм** — поедание друг друга (или своих детенышей) организмами одного вида.

**Климактерический биогеоценоз** — саморегулирующийся, стабильный биогеоценоз, который находится в состоянии равновесия со средой.

**Климатические факторы** — абиотические факторы, к которым относятся свет, влажность, температура, ветер и др.

**Консервация** — метод временного приостановления некоторых процессов.

**Криоконсервация** — хранение клеток, тканей и органов организма методом замораживания при очень низкой температуре.

**Ксерофиты** — растения, приспособленные к росту в условиях недостатка воды.

**Монокультура** — возделывание в искусственных экосистемах одних и тех же культур в течение многих лет.

Морские лиманы — прибрежные бухты и дельты рек.

**Нейтральные растения** — растения, цветение которых не зависит от продолжительности светового дня.

**Ограничивающий фактор** — фактор, замедляющий жизнедеятельность организма.

**Панмиксия** — способность свободного скрещивания особей одного вила.

**Паразитизм** - использование одним организмом другого в качестве источника пищи и места обитания и нанесение ему таким путем вреда.

**Реинтродукция** — восстановление и размножение исчезающих видов и возврат их в природу.

Симбиоз — синергические взаимоотношения между организмами.

**Территориальность** — овладение отдельными организмами или популяциями определенной территорией для проживания, которую они помечают для защиты от других видов.

**Транспирация** (от *франц*. transpiper — потеть) — испарение влаги организмами, которое происходит в основном через устьица листьев.

Фитофаги — травоядные организмы.

**Фитоалексин** — антибиотик, синтезируемый в растениях, против грибов и бактерий.

**Фотонастия** (от *греч*. nastas — уплотнение) — двигательные реакции растений под воздействием света, направление которых не зависит от направления воздействия.

**Фототронизм** (от *греч*. tropos — поворот) — двигательные реакции растений под воздействием света, направление которых зависит от направления света.

**Фототаксис** (от *греч*. taxis — упорядоченное движение) — двигательные реакции свободно передвигающихся низших растений и животных под влиянием света.

Экологическая сукцессия — смена видов в биогеоценозах, формирование вместо одного биогеоценоза другого, нового.

**Эмиграция** — перемещение организмов из своего места обитания в другое.

**Экосфера** (биосфера) — комплекс всех живых организмов на Земле, которые находятся в состоянии обмена энергией с Солнцем.

Экотоп — абиотическая часть биогеоценоза.

#### Глава VI

# БИОСФЕРА И ЕЕ ЭВОЛЮЦИЯ

# Задания

#### І. Прочитайте текст § 34.

#### П. Ответьте на вопросы.

- 1. Что такое биосфера, какие вещества входят в ее состав?
- 2. Объясните основные функции живого вещества в биосфере.
- 3. Что вы знаете о биомассе биосферы и ее распределении?
- 4. Объясните состав и значение биомассы суши и океана.
- 5. Объясните, как происходит образование почвы.

#### III. Определите правильные ответы в тестовых заданиях.

- 1. Как называется живая оболочка Земли?
  - А) гидросфера; В) тропосфера; С) литосфера;
- Где находится верхняя граница биосферы и до какой высоты она лохолит?
  - A) ватмосфере,  $45-50 \, \text{км}$ ;
  - В) в стратосфере, 90-100 км;
  - С) в тропосфере. 15—25 км:
  - D) в тропосфере, 5—10 км;
  - Е) в северном сиянии, озоновом экране.
- 3. Определите, что относится к биогенным веществам.
  - А) нефть, каменный уголь;
  - В) горные породы;
  - С) радиоактивные вещества;
  - D) метеориты;
  - Е) почва, вода, горные породы.
- Укажите процент биомассы растений и животных соответственно в биомассе суши.
  - A) 90: 10: B) 80: 20: C) 95: 5:
  - D) 99,2; 0,8; E) 50; 50.
- Укажите процент биомассы растений и животных соответственно в биомассе океана.
  - **A)** 5; 95; **B)** 0,8; 99,2; C) 6,3; 93,7;
  - **D)** 45; 55; E) 10; 90.

#### IV. Изучите рис. 74-75.

» • Заполните таблицу.

Основные функции живого вещества

*Таблица 30* Пояснения

- 1.
- 2.
- 3.
- 4

# § 34. БИОСФЕРА, ЕЕ ГРАНИЦЫ, СОСТАВ, ФУНКЦИИ, БИОМАССА

**Биосфера** (от *греч*. bios — жизнь + sphaira — шар) — оболочка Земли, состав, строение и энергия которой определяются живыми организмами. Первые данные об областях распространения жизни в оболочке Земли принадлежат Ж. Б. Ламарку.

Понятие биосферы впервые ввел в науку австрийский геолог Е. Зюсс в 1875 г. Законченное учение о биосфере было разработано русским ученым В. И. Вернадским.

Биосфера - - это часть оболочки Земли, населенная живыми организмами и постоянно изменяющаяся в результате их деятельности. Совокупность всех биогеоценозов на Земле образует общую экологическую систему - - биосферу. Биогеоценоз — это наименьшая (элементарная) единица биосферы.

**Границы биосферы.** Живые организмы населяют в основном газообразную (атмосфера), жидкую (гидросфера) и твердую (литосфера) оболочки Земли (рис. 74). Верхняя граница биосферы расположена на высоте 15—25 км над уровнем моря (и в разных регионах

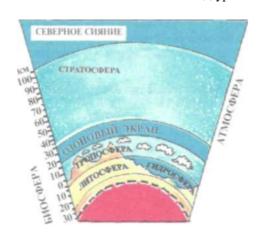



Рис. 74. Геосфера Земли.

Земли различна) в нижнем слое атмосферы - - тропосфере (рис. 75).

В этих пределах биосферы под влиянием энергии солнечных лучей кислород превращается в озон и образуется озоновый экран. Он не пропускает основную часть космических и ультрафиолетовых лучей, оказывающих вредное воздействие на живые организмы, поэтому они не достигают земной поверхности.

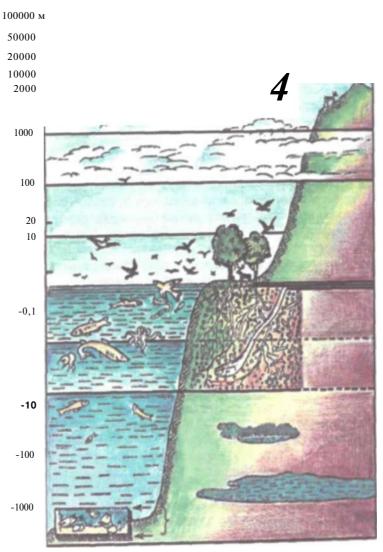



Рис. 75. Границы распространения жизни в биосфере.

В самых верхних слоях биосферы встречаются споры очень устойчивых к неблагоприятным условиям бактерий, грибов, мхов и папоротников (их называют *аэропланктоном*). Некоторые птицы, бабочки и пауки могут подниматься на высоту 6—7 км.

Воды океанов, морей, озер и рек образуют гидросферу, которая занимает около 70% площади земного шара. Во всех частях гидросферы, даже на больших ее глубинах, доходящих до 11 км, встречается жизнь.

В литосфере жизнь существует в ее верхних слоях, достигающих глубины 3—4 км. При бурении нефтяных скважин в бассейне реки Миссисипи на глубине 7,5 км были обнаружены анаэробные бактерии.

Таким образом, биосфера — это часть геологических оболочек Земли, где обитают живые организмы. Граница жизни на планете определяется границами биосферы.

Состав биосферы. Состав биосферы многообразен и подразделяется на четыре части.

- 1. Живое вещество.
- 2. Биогенные вещества.
- 3. Твердые тела.
- 4. Вещества биогенного и абиогенного происхождения.

Совокупность всех живых организмов, обитающих на нашей планете, составляет живое вещество биосферы. Несмотря на то, что живое вещество по своей массе представляет весьма незначительную часть биосферы, его деятельность в течение геологических эпох оказывала огромное влияние на развитие Земли.

По утверждению В. И. Вернадского, жизнь зародилась на Земле некоторое время спустя после ее появления и явилась одним из основных факторов, изменивших облик нашей планеты.

Биогенные вещества есть результат деятельности живых организмов. К ним можно отнести нефть, каменный уголь, известняк и атмосферные газы.

*Твердые тела* — горные породы, возникшие в результате природных процессов, например, извержения вулканов, и не связанные с деятельностью живых организмов.

Вещества биогенного и абиогенного происхождения — это почвы, образовавшиеся в результате воздействия живых организмов и процессов неорганической природы. В составе биосферы встречаются также в небольших количествах радиоактивные вещества, рассеянные атомы, метеориты, частицы космической пыли.

#### Функции живого вещества в биосфере.

- 1. Функция газообмена результат процессов фотосинтеза и дыхания. При фотосинтезе и дыхании регулируется газовый состав атмосферы. Атмосфера, образованная в результате деятельности живых организмов, поддерживается их деятельностью.
- 2. Концентрационная функция накопление живыми организмами химических элементов, распространенных в окружающей среде. Растения, получая азот, калий, фосфор, водород и углерод из почвы и воздуха, вводят их в состав органических веществ. Осадочные породы, мел, известковые породы также являются продуктом концентрационной функции.
  - 3. Окислительно-восстановительная функция обеспечивает кру-

оворот химических элементов с переменной валентностью — железа, серы, марганца, азота и др. Например, в результате деятельности хемосинтезирующих бактерий образуются  $H_2S$ , некоторые виды железной руды, различные оксиды азота.

*Биохимические функции* обеспечивают процессы, протекающие в живых организмах при их жизни и после смерти. Они неразрывно связаны с питанием, дыханием, размножением, распадом и гниением.

**Биомасса биосферы.** Общая масса живого вещества в биосфере называется биомассой. В настоящее время на Земле известны около 500 тыс. видов растений, более 1,5 миллионов видов животных. 93% их населяют сушу, а 7% являются обитателями водной среды (табл.31).

Из данных табл. 31 видно, что хотя океаны и занимают около 70% земной поверхности, однако они образуют всего 0,13% биомассы Земли.

Биомасса растений (фитобиомасса) на суше составляет 99% биомассы Земли, а биомасса животных (зообиомасса) — менее 1%.

Основную часть биомассы океанов (93,7%) составляет зообиомасса.

**Биомасса суши.** В направлении от полюсов к экватору содержание биомассы и многообразие видов, плотность жизни постепенно увеличиваются. В экваториальных биоценозах наблюдается острая конкуренция за обладание местом обитания, пищей, светом и кислородом. Под воздействием человека площади, где образуется биомасса, претерпевают очень большие изменения. Основную часть поверхности суши занимают биогеоценозы почвы.

 Таблица 31

 Биомасса организмов на Земле

| Масса<br>сухого<br>вещества | Континенты                    |                                             | ы                          | Океаны                        |                                             |                               |                             |
|-----------------------------|-------------------------------|---------------------------------------------|----------------------------|-------------------------------|---------------------------------------------|-------------------------------|-----------------------------|
|                             | Зеле-<br>ные<br>расте-<br>ния | Живот-<br>ные и<br>микро-<br>организ-<br>мы | Всего                      | Зеле-<br>ные<br>расте-<br>ния | Живот-<br>ные и<br>микро-<br>орга-<br>низмы | Всего                         | Общее<br>коли-<br>чество    |
| Тонны                       | 2,4 x<br>10 <sup>12</sup>     | $0.02 \text{ x}$ $10^{12}$                  | 2,42 x<br>10' <sup>2</sup> | $0.0002x$ $10^{12}$           | $0,003 \text{ x} \\ 10^{12}$                | $0,0032 \text{ x} \\ 10^{12}$ | 2,4232x<br>10 <sup>12</sup> |
| Проценты                    | 99,2                          | 0,8                                         | 100                        | 6,3                           | 93,7                                        | 100                           |                             |

Образование почвы происходит биогенным путем, она состоит из неорганических и органических веществ. Вне биосферы образование почвы невозможно. Под воздействием микроорганизмов, растений и животных на горных породах начинает постепенно формироваться почвенный слой Земли. Накопленные в организмах биогенные элементы после их гибели и разложения опять переходят в почву.

Процессы, происходящие в почве, являются важным компонентом круговорота веществ в биосфере. Хозяйственная деятельность человека может привести к постепенному изменению состава почвы и гибели живущих в ней микроорганизмов. Вот почему необходима разработка мер разумного использования почвы.

Биомасса океана. Вода является важным компонентом биосферы и одним из наиболее необходимых факторов для жизни организмов. Основная часть воды находится в океанах и морях. В состав океанической и морской воды входят минеральные соли, содержащие около 60 химических элементов. Кислород и углерод, необходимые для жизни организмов, хорошо растворяются в воде. Водные животные в процессе дыхания выделяют углекислый газ, а растения в результате фотосинтеза обогащают воду кислородом.

В верхних слоях океанических вод, достигающих в глубину 100 м, широко распространены одноклеточные водоросли и микроорганизмы, которые образуют *микропланктон* (от *греч*. plankton — блуждающий).

Около 30% фотосинтеза, осуществляющегося на нашей планете, происходит в воде. Водоросли, воспринимая солнечную энергию, превращают ее в энергию химических реакций. В питании водных организмов основное значение имеет планктон.

Организмы, ведущие донный образ жизни, называются *бентосом* (от *греч*. benthos — глубинный). Бактерии, живущие на дне океанов, превращают (минерализуют) органические вещества в неорганические.

Гидросфера играет важную роль в распределении тепла и влажности по планете, в круговороте веществ, поэтому она также оказывает мощное влияние на биосферу.

# Задания

# І. Прочитайте текст § 35.

# II. Ответьте на вопросы.

- 1. Объясните круговорот веществ и энергии.
- 2. Какие виды биогенной миграции вы знаете?
- 3. Объясните, почему Л. Пастер назвал бактерии «могильщиками живой: природы».
- 4. Как образовались полезные горючие ископаемые?

#### III. Определите правильные ответы в тестовых заданиях.

- 1. Что такое биологический круговорот?
- А) разновидность процесса ассимиляции;
- В) результат диссимиляции;
- С) биогенная миграция атомов;
- D) все ответы дополняют друг друга;
- Е) нет правильного ответа.
- 2. Какие организмы участвуют в круговороте азота?
  - А) редуценты;
  - В) нитрифицирующие бактерии;
  - С) клубеньковые бактерии;
  - D) все ответы дополняют друг друга;
  - Е) нет правильного ответа.
- 3. Что такое нитрификация?
  - А) образование аммиака вследствие распада белков;
  - В) превращение солей аммония в азотную и азотистую кислоты;
  - С) превращение нитратов в элементарный азот;
  - D) все ответы правильные;
  - Е) только А и В.
- 4. Что такое денитрификация?
- А) образование аммиака вследствие распада белков;
- В) превращение солей аммония в азотную и азотистую кислоты;
- С) превращение нитратов в элементарный азот;
- D) все ответы правильные;
- Е) только А и В.
- 5. Укажите азотфиксирующие бактерии.
  - А) азотобактерии в почве, клубеньковые бактерии;
  - В) сине-зеленые водоросли в воде;
  - С) редуценты;
  - **D)** А и **B**; E) **B** и C.

# IV. Изучите и поясните рис. 76 - 77.

# V. Заполните таблицу.

Таблица 32

| Этапы превращения азота | Пояснения |
|-------------------------|-----------|
| 1.                      |           |
| 2.                      |           |
| 3.                      |           |
| 4.                      |           |

# § 35. КРУГОВОРОТ ВЕЩЕСТВ И ПРЕВРАЩЕНИЕ ЭНЕРГИИ В БИОСФЕРЕ. БИОГЕННАЯ МИГРАЦИЯ

Круговорот веществ и энергии. Все составные компоненты биосферы — горные породы, природные воды, газы, почва растения, животные, микроорганизмы — связаны с беспрерывным процессом круговорота.

Переход элементов из внешней среды в живые организмы, участие их в клеточном метаболизме, затем поступление во внешнюю среду и снова использование их живыми организмами называется биотическим круговоротом веществ и энергии.

Биотический круговорот происходит с участием всех живых существ. Это — важный фактор, обеспечивающий существование биосферы, способствующий сохранению ее целостности и равно-, весия. Количество элементов, входящих в состав организмов на Земле, не безгранично. Если бы элементы лишь потреблялись; организмами и не возвращались обратно в среду, то рано или поздно; они исчерпались бы и жизнь могла прекратиться. Как отмечал академик В. Р. Вильяме, единственный способ, который обеспечивает неограниченность малого количества, это вращение его по кругу. Именно этот способ был выбран самой природой.

Единственный источник, который обеспечивает круговорот веществ на Земле, — это солнечная энергия.

Зеленые растения — аутотрофы, — используя солнечную; энергию, синтезируют из неорганических веществ органические, которые расщепляются другими организмами — гетеротрофами. Из минерализованных веществ растения синтезируют новые органи-: ческие соелинения.

Ежегодно поступающий на Землю поток энергии Солнца,! составляет  $10.5 \times 10^{20}$  кДж. 42% этой энергии отражается », возвращается в космическое пространство, а 58% поглощается; атмосферой и почвой, из них 20% отражается от земно" поверхности. 10% поглошенной солнечной энергии расходуется н а? испарение влаги из воды и почвы. Каждую минуту на поверхности Земли испаряется около 1 млрд тонн воды. Беспрерывны" круговорот воды между водными бассейнами и сушей являете одним из важных факторов, обеспечивающих существование жиз" на Земле и взаимоотношения растений и животных с неживо природой. Только 0,1-0,2% солнечной энергии, поступающей н поверхность Земли, используется зелеными растениями дл осуществления процессов фотосинтеза. Эта энергия играет оче большую роль в обеспечении круговорота химических элементов хотя она очень мала по сравнению с той энергией, котора расходуется на испарение воды и согревание земной поверхности.

Биогенная миграция атомов. Биогенная миграция, то есть круговорот веществ, происходит за счет питания, дыхания, размножения живых организмов, синтезирования, накопления и расщепления ими органических веществ. Элементы, активно участвующие в биогенной миграции, называются биогенами. К ним относятся углерод, водород, кислород, азот, фосфор, сера, железо, марганец, молибден, магний, медь, цинк, кальций, натрий, калий и др.

Изотопов химических элементов очень много, но в состав живых организмов могут входить только некоторые из них. Например, среди изотопов водорода 'H, ' $^{2}H$ , " $^{3}H$ , лишь 'H является наиболее активным и входит в состав живых организмов. В состав органических веществ входит изотоп  $^{12}$ C, а неорганических веществ — изотоп  $^{13}$ C. Среди изотопов кислорода  $^{16}$ 0,  $^{17}$ 0,  $^{18}$ 0 только изотоп  $^{16}$  0 входит в состав воды и углекислого газа и обладает высокой активностью.

Время одного полного круговорота химических элементов называется биогеохимическим циклом. Например, в течение 2000 лет весь кислород атмосферы, в течение 200—300 лет — углекислый газ, в течение 2 млн лет — вся вода биосферы проходят через живое вещество.

Живые организмы обладают свойством накапливать не только широко распространенные в природе химические элементы, но и те, которые встречаются в очень малых количествах. Концентрация химических элементов в живых организмах гораздо выше, чем во внешней среде. В растениях содержание углерода в 200 раз больше, чем в земной коре, а азота — в 30 раз.

Различные организмы обладают способностью накапливать в себе большие количества тех или иных элементов. Так, железные бактерии накапливают больше железа, простейшие корненожки — кальция, губчатообразные, некоторые водоросли — большие количества йода.

В результате биогенной миграции под влиянием живых организмов изменяется валентность некоторых химических элементов и образуются новые химические соединения. Около 40 из известных нам химических элементов активно участвуют в биогенной миграции.

Существует три вида биогенной миграции. Первый осуществляется микроорганизмами, второй — многоклеточными организмами. Первый вид миграции протекает интенсивнее, чем второй. В настоящее время в биогенной миграции возрастает значение человека (третий вид).

Помимо биогенного способа миграции существует и физико-химический способ, однако преобладающей является все же биогенная миграция.

Ниже подробнее ознакомимся с миграцией некоторых биогенных элементов.

**Круговорот углерода.** Углекислый газ, поглощаясь растениями, в процессе фотосинтеза превращается в углеводы, липиды, белки и другие органические вещества. Эти вещества потребляются животными, которые в процессе дыхания снова выделяют в атмосферу углекислый газ. Останки растений и животных и их отходы расщепляются микроорганизмами и минерализуются. Конечным продуктом минерализации является углекислый газ, который выделяется из почвы и водных бассейнов в атмосферу (рис. 76).

Некоторая часть углерода удерживается в почве в составе органических веществ. В морской воде углерод накапливается в виде угольной кислоты и ее солей, мела, известняка, кораллов. В виде осадочных пород углерод долгое время не участвует в биогенной

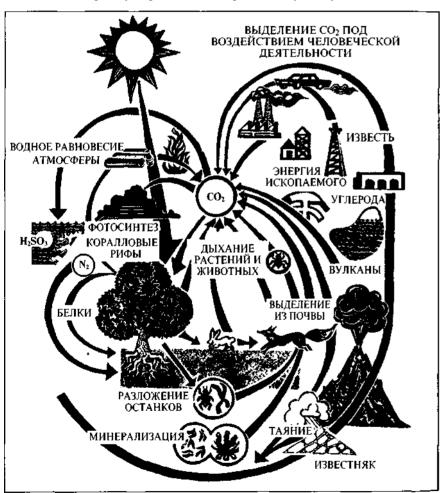



Рис. 76. Круговорот углерода в биосфере.

миграции. Со временем в результате процессов горообразования эти осадочные породы поднимаются вверх и под воздействием химических изменений вовлекаются в круговорот.

Углерод также выделяется в атмосферу в составе отходов автомашин, производственных предприятий. Широко используемые в хозяйственной деятельности человека энергетические ресурсы — нефть, каменный уголь, горючие газы, торф и древесина — образовались в результате круговорота углерода. Они образовались в условиях недостатка кислорода, из не успевших минерализоваться органических веществ. Эти полезные ископаемые вновь выделяются в атмосферу в виде углекислого газа в составе дымовых отходов заводов, фабрик и электростанций.

**Круговорот азота.** Одним из наиболее важных элементов является азот. Он входит в состав белков и нуклеиновых кислот. Часть азота усваивается во время молнии, соединяясь с кислородом и образуя оксиды азота. Но основная масса азота переходит в почву и воду в результате фиксации атмосферного азота живыми организмами (рис. 77).

Живущие в почве азотфиксирующие бактерии обогащают почву азотом в результате их минерализации после гибели. На каждом гектаре земли таким образом ежегодно накапливается около 25 кг азота.

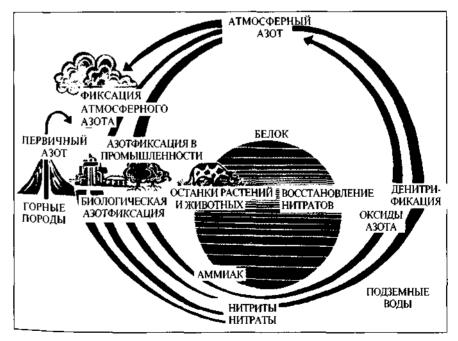



Рис. 77. Круговорот азота в биосфере.

Наиболее эффективными азотфиксирующими являются *клубень-ковые бактерии*, обитающие в корневой системе бобовых растений, и свободно живущие в почве *азотобактерии*.

Накопленный в корнях растений азот переходит в надземные органы растений и расходуется на биосинтез белка, а также скапливается в окружающей корни почве. На одном гектаре площади, засеянной люцерной, за год накапливается до 150—400 кг азота.

В воде и влажной почве азот фиксируется сине-зелеными водорослями.

После смерти организмов их белки расщепляются гнилостными микроорганизмами с выделением аммиака (этот процесс называется аммонификацией), который частично усваивается растениями, а частично бактериями и превращается в нитраты. Этот процесс называется нитрификацией. Нитраты, как и аммонийные соли, используются растениями и микроорганизмами. Некоторая же часть нитратов расщепляется отдельными бактериями до элементарного азота и выделяется в атмосферу. Этот процесс называется денитрификацией. Вот так совершается постоянный круговорот азота в природе.

Таким образом, в процессе биогенной миграции в результате взаимодействия живой (биотической) и неживой (абиотической) природы происходит переход неорганической материи в живые организмы и их превращение с возвратом в абиотическое состояние. Этот круговорот происходит беспрерывно.

# Задания

- I. Прочитайте текст § 36.
- И. Ответьте на вопросы.
  - 1. Под воздействием каких факторов происходила эволюция биосферы?
  - 2. Изложите основные этапы эволюции биосферы.
  - 3. Дайте объяснение этапов биогенеза и ноогенеза.
  - 4. Укажите основные различия м е ж д у понятиями «биосфера» и «ноосфера».
  - 5. Объясните, что представляет собой наука ноогеника и каковы ее задачи.
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Этап биогенеза эволюции биосферы связан с...
  - А) образованием первичной биосферы;
  - В) происхождением многоклеточных организмов;
  - С) возникновением человеческого общества;
  - D) A и B; E) B и C.
  - 2. Этап ноогенеза эволюции биосферы связан с...
    - А) образованием первичной биосферы;
    - В) происхождением многоклеточных организмов;
    - С) возникновением человеческого общества;
    - D) A и В; E) В и С.

- 3. Озоновый экран ... (Определите неправильный ответ).
  - А) образуется в атмосфере из кислорода под воздействием электрохимических процессов;
  - В) атмосферный слой, содержащий в своем составе в основном элементарный азот;
  - С) атмосферный слой, не пропускающий на Землю ультрафиолетовые лучи;
  - D) атмосферный слой, не пропускающий на Землю космические лучи;
  - Е) расположен на высоте 20—25 км от поверхности Земли.
- 4. На каком этапе развития биосферы начинает нарушаться состояние гомеостаза?
  - А) на этапе биогенеза;
  - В) на первом этапе;
  - С) на втором этапе;
  - D) на этапе ноогенеза;
  - Е) все ответы правильные.
- 5. Что такое ноосфера?
  - А) первичная биосфера;
  - В) вторичная биосфера;
  - С) биосфера, регулируемая человеком;
  - D) A и B; E) A и C.
- IV. Проанализируйте сходства и различия между биосферой и ноосферой.
- V. Заполните таблицу.

| Факторы, воздействующие на<br>эволюцию биосферы | Таблица 3 Пояснения к ним, их значение |
|-------------------------------------------------|----------------------------------------|
| 1.                                              |                                        |
| 2.                                              |                                        |
| 3.                                              |                                        |
| 4.                                              |                                        |

# § 3 6. ЭВОЛЮЦИЯ БИОСФЕРЫ. БИОГЕНЕЗ, НООГЕНЕЗ, НООСФЕРА

Эволюция биосферы проходила под воздействием двух основных факторов — естественных геологических и климатических изменений на планете, а также изменения количества и состава живых организмов в процессе биологической эволюции. На настоящем этапе к этим факторам добавляется третий фактор — деятельность человеческого общества.

Эволюция биосферы подразделяется на три этапа.

1. На первом этапе образовалась первичная биосфера с биотичес-

ким круговоротом веществ. Этот этап начался приблизительно 3 млрд лет назад и продолжался до кембрийского периода палеозойской эры.

- 2. На втором этапе происходило усложнение биотической части биосферы многоклеточных организмов. Этот этап начался 0,5 млрд лет назад с кембрийского периода и продолжался до появления современных людей.
- 3. Третий этап связан с появлением человеческого общества. Он начался приблизительно 40—50 тысяч лет тому назад и продолжается сегодня. Первый и второй этапы эволюции биосферы проходили исключительно по биологическим закономерностям, и поэтому они называются этапом биогенеза. Так как третий период связан с возникновением и развитием человеческого общества, он носит название ноогенеза.

Этап биогенеза. Образование биосферы происходило одновременно с появлением живых организмов на Земле. Эволюция живых организмов шла параллельно с изменением биосферы. Первые живые организмы были одноклеточными гетеротрофными, анаэробными прокариотами. Эти организмы накапливали энергию в основном в результате процессов гликолиза и брожения. В первичной биосфере было мало органических веществ, и гетеротрофные прокариоты не могли быстро размножаться. В результате естественного отбора возникли аутотрофные организмы, способные самостоятельно синтезировать органические вещества из неорганических — первые хемосинтезирующие и фотосинтезирующие бактерии и синезеленые водоросли.

Первые фотосинтезирующие организмы, поглощая углекислый газ и выделяя кислород, изменили состав атмосферы.

В результате содержание углекислого газа в атмосфере уменьшалось, а содержание кислорода все больше увеличивалось. В верхних слоях атмосферы на высоте 15—25 км под воздействием электрохимических процессов кислород образовал озоновый экран, который защищал живые организмы на Земле от губительного воздействия ультрафиолетовых солнечных и космических лучей. В этих условиях происходило дальнейшее увеличение численности живых организмов на поверхности морей.

Увеличение свободного кислорода в атмосфере обусловило появление на поверхности Земли организмов, приспособленных к аэробному дыханию кислородом, и многоклеточных существ.

Озоновый экран дал возможность живым организмам выйти из воды на сушу и распространиться по ней. Предполагается, что первые многоклеточные организмы появились в период, когда содержание кислорода в атмосфере достигло примерно 3%, — в начале кембрийского периода, примерно 500 млн лет назад.

Фотосинтезирующие организмы, обитающие в морях, вырабаты-

вали избыточное количество кислорода, что привело к интенсивному развитию аэробных организмов. Вследствие расшепления веществ в процессе аэробного дыхания выделялось большое количество энергии, а большой запас энергии создавал возможности для еще большего усложнения организмов.

Организмы завоевали различные среды обитания и широко распространились. В палеозойской эре жизнь имела широкое распространение не только в водной среде, она выходила также на сушу. Интенсивное развитие зеленых растений способствовало дальнейшему обогащению атмосферы кислородом и большему усложнению организмов.

В середине палеозойской эры установилось равновесие между образованием и расходом кислорода, содержание его в атмосфере достигло 20%, и это равновесие сохраняется и поныне.

В результате уравновешивания деятельности аутотрофов, гетеротрофов и редуцентов, участвующих в круговороте веществ, в биосфере сформировалось состояние гомеостаза. Появление человека привело к образованию очень мощного в истории биосферы фактора, который по степени своего воздействия приравнивался к крупным геологическим процессам. Этот фактор (человеческая деятельность) становился причиной нарушения гомеостатического (постоянство, устойчивость) состояния биосферы.

Этап ноогенеза. С появления человеческого общества в эволюции биосферы начался этап ноогенеза. На этом этапе эволюция биосферы продолжается под влиянием сознательной трудовой деятельности человека. Сознательная деятельность человека в пределах биосферы способствовала теперь превращению ее в ноосферу.

Понятие «ноосфера» было впервые введено в науку в 1927 году французским геологом Э. Леруа (от греч. noos — разум + sphaira — шар). В. И. Вернадский истолковывал ноосферу как биосферу, измененную под влиянием труда и разумной деятельности человека.

Человек должен правильно понимать закономерности эволюции биосферы и исходя из этого разумно регулировать ее экологическое развитие. Другими словами, своей трудовой деятельностью человек не должен нарушать закономерности эволюции биосферы.

В середине XX в. сформировалась наука ноогеника. Основной задачей этой науки является восстановление нарушенных взаимо-отношений между человеком и природой, обусловленных техническим прогрессом. Иначе говоря, ноогеника — это наука, которая занимается разработкой мероприятий по предупреждению экологического кризиса в условиях беспрерывного научно-технического прогресса.

Ноогеника должна не только выполнять охранные функции, но

и разрабатывать меры по расширению многообразия жизненных форм на Земле, созданию новых видов микроорганизмов, растений и животных.

Не нужно стремиться к установлению постоянного равновесия между человеком и природой. Это и невозможно. Мы должны научиться осознанно управлять эволюцией биосферы, главной составной частью которой является человеческое общество.

### Задания

- I. Прочитайте текст § 37.
- II. Ответьте на вопросы.
  - 1. Объясните, каким было первоначальное воздействие человека на биосферу.
  - 2. Каково воздействие человека на биосферу в эпоху научнотехнического прогресса?
  - 3. Что вы понимаете под экологическим кризисом?
  - 4. Что вы знаете о международной программе по охране природы?
  - 5. Какие мероприятия по охране природы осуществляются в Узбекистане?
- III. Определите правильные ответы в тестовых заданиях.
  - 1. Что такое «парниковый эффект»?
    - А) увеличение количества парников;
    - В) увеличение количества азота в атмосфере;
    - С) увеличение количества кислорода в атмосфере;
    - D) увеличение содержания углекислого газа, повышение температуры в атмосфере;
    - E) B, C, D.
  - 2. Основные причины появления «озоновых дыр» ...
    - А) выделение в атмосферу значительного количества оксида азота  $(\Pi)$ ;
    - В) уменьшение концентрации углекислого газа в атмосфере;
    - С) выделение в атмосферу значительного количества газов фреона;
    - D)АНС: Е)ВИС.
  - 3. Одна из причин увеличения количества «кислотных» дождей ...
    - А) разрушение озонового экрана;
    - В) усиление «парникового эффекта»;
    - С) значительное выделение в атмосферу  $H_2S$ ;
    - D) все ответы дополняют друг друга;
    - Е) нет правильного ответа.
  - 4. Когда была принята программа «Человек и биосфера»?
    - A) 1968 r.; B) 1970 r.; C) 1 9 7 1 r.; D) 1972 r.; E) 1973 r.
  - 5. Экологически чистые источники получения энергии ... (Укажите неправильный ответ).
    - А) солнце;
    - В) ветер;
    - С) подземные горячие источники;

- D) кинетическая энергия океанов;E) атомные электростанции.
- IV. Изучите рис. 78—80 и поясните их.
- V. Заполните таблицу.

Таблица 34

| Рациональные методы охраны биосферы | Пояснения (на примерах) |
|-------------------------------------|-------------------------|
| 1.                                  |                         |
| 2.                                  |                         |

VI. Обсудите с однокурсниками вопрос о том, какой вклад могут внести учащиеся в дело охраны биосферы.

# § 3 7 . ВЛИЯНИЕ ЧЕЛОВЕКА НА БИОСФЕРУ. ПРОБЛЕМЫ ОХРАНЫ БИОСФЕРЫ

Влияние человека на биосферу началось еще в неолите. На начальных этапах развития человечества воздействие человека на природу было почти незаметным. Все, что он брал от природы, возвращалось обратно в нее. Биотический круговорот веществ в биосфере не нарушался. Однако воздействие человека на природу постепенно усиливалось. В течение последних столетий в результате научно-технического прогресса под воздействием человека особенно усилилась биогенная миграция элементов. В течение всей своей истории человечество, осуществляя трудовую деятельность, стремилось как можно больше и быстрее извлечь выгоду из окружающей среды. Оно не задумывалось над тем, к каким последствиям может привести вмешательство человека в природные явления. В последний век воздействие человека на биосферу значительно возросло, что привело к возникновению острых проблем. Природные ресурсы постоянно сокращаются. Исчезли многие виды растений и животных. Среда загрязняется и отравляется промышленными и бытовыми отходами, ядовитыми химическими веществами. Нарушаются природные экосистемы, озера, леса. Эти неблагоприятные изменения оказывают сильное влияние на растительный и животный мир, на самого человека.

Недопонимание человеком закономерностей эволюции биосферы может привести к нежелательным изменениям в окружающей среде. Все возрастающее влияние человека на гидросферу и атмосферу вызывает климатические изменения в масштабах биосферы. В частности, в течение последних лет в атмосфере наблюдается постепенное увеличение содержания углекислого газа. Использование органического топлива приводит к сгоранию и сокращению содержания кисло-

рода и росту содержания углекислого газа в атмосфере с образованием «парникового эффекта», что обусловливает повышение температуры земной поверхности. Установлено, что за последние сто лет температура земной поверхности повысилась в среднем на 0,6°С. Изменение климата приводит ко все большему увеличению площадей пустынь и степей, к таянию ледников в горах, понижению уровня воды океанов и морей. Как уже отмечалось выше, атмосфера имеет озоновый слой, максимальная концентрация которого находится на высоте 15—25 км от поверхности Земли. В результате поступления в атмосферу оксидов азота (II) и фреона на протяжении ряда лет происходит уменьшение толщины озонового слоя.

Фреон широко используется при распылении лаков и красок, в качестве охлаждающего вещества в холодильниках и кондиционерах. В последние годы в результате значительного уменьшения содержания озона в атмосфере над Антарктидой наблюдается такое опасное явление, как «озоновые дыры». В целях предотвращения этого явления и предупреждения дальнейшего разрушения озонового слоя представители 50 стран мира в канадском городе Монреале в 1987 г. подписали международное соглашение о сокращении производства фреонов в среднем на 50%. Загрязнение атмосферы беспрерывно продолжается и увеличивается из года в год. Это происходит за счет поступления в атмосферу отходов промышленных предприятий, выхлопных газов транспорта, в составе которых содержатся вредные соединения, сероводород, углерод и тяжелые металлы (частицы свинца, меди, кадмия, никеля и др.). В атмосферу ежегодно выделяются сотни миллионов тонн загрязняющих веществ. Увеличение содержания Н<sub>2</sub>S (сероводорода) в воздухе приводит к частому выпадению «кислотных» дождей. Одной из главных причин уменьшения плодородия фруктовых деревьев и поражения виноградников в Узбекистане являются именно «кислотные» дожди.

Отходы алюминиевого завода, построенного вблизи таджикского города Турсунзаде, привели к снижению плодородия известных гранатовых плантаций в Сурхандарьинской области и росту заболеваемости животных и людей. Выбросы химических заводов в городе Навои также во многом способствуют загрязнению окружающей среды. Нерациональное использование воды для орошения и нужд промышленных предприятий приводит к высыханию мелких рек и резкому уменьшению стока крупных рек. Типичным примером подобных явлений является проблема Аральского моря. Чрезмерное расширение орошаемых хлопковых плантаций чревато опасностью высыхания этого моря. Вследствие бесконтрольного и небрежного использования воды таких крупных рек, как Сырдарья и Амударья, они не доходят до Аральского моря, что приводит к нарушению природных экологических систем Приаралья и ухудшению здоровья

жителей этого региона. Поступление минеральных удобрений, отходов животноводства и канализационных стоков в водные бассейны влечет за собой увеличение содержания азота и фосфора в воде, размножение водорослей и гибель животных, особенно рыб, вследствие уменьшения запасов кислорода. Вырубка лесов и уменьшение их площадей в последнее время приводят к очень неблагоприятным результатам. В результате загрязнения атмосферы, водоемов и почвы заболевает и гибнет большое количество деревьев. Гибель лесов обусловливает резкое изменение климата, сокращение водных богатств и ухудшение структуры почвы (рис. 78). Для энергетического обеспечения хозяйства в настоящее время широко развернуто строительство тепловых, гидро- и атомных электростанций. Тепловые электростанции используют природное топливо, что приводит к загрязнению атмосферы (рис. 79), гидроэлектростанции требуют строительства водохранилищ на очень больших территориях, в результате чего обширные земли с плодородной почвой оказываются под водой. Выяснилось, что атомные электростанции, которые ранее считались экологически чистыми и безопасными, также являются весьма опасными. Катастрофа на Чернобыльской АЭС на Украине вызвала экологический кризис, нанесла большой вред растительному и животному миру и привела к широкому распространению различных заболеваний среди населения. Таким образом, мощное воздействие человека на экологические системы может привести к печальным результатам, способным спровоцировать целую цепь экологических изменений. В настоящее время человечеству грозит экологический кризис. Если не будут приняты



Рис. 78. Эрозия почвы.

необходимые меры, то многие области биосферы станут непригодными для жизни. Поэтому охрана природы становится одной из актуальных задач сегодняшнего дня.

Проблемы охраны биосферы. Охрана природы — это рациональное, разумное использование природных богатств, что способствует сохранению первозданного многообразия природы и улучшению условий жизни населения. В деле охраны биосферы большое значение имеет переход на использование промышленных и сельскохозяйственных технологий, позволяющих экономно расходовать природные богатства. Для этого необходимо: 1) наиболее полное использование ископаемых природных богатств; 2) вторичное использование отходов производства, применение безотходных технологий; 3) получение энергии от экологически чистых источников путем использования энергии Солнца, ветра, кинетической энергии океана, энергии подземных горячих источников. Особенно эффективно внедрение безотходных технологий, работающих в режиме закрытых циклов, когда отходы не выбрасываются в атмосферу или в водные бассейны, а используются повторно.

Охрана существующих видов живых организмов также имеет большое значение в биологическом, экологическом и культурном плане. Каждый ныне живущий вид является продуктом многовековой эволюции и обладает своим генофондом. Ни один из существующих видов нельзя считать абсолютно полезным или вредным. Те виды, которые считались вредными, со временем могут оказаться полезными. Именно поэтому охрана генофонда существующих видов имеет особое значение. Наша задача — сохранить все дошедшие до нас после длительного эволюционного процесса живые организмы. Растительные и животные виды, численность которых уже сократилась или находится под угрозой исчезновения, занесены в



Р и с. 79. Загрязнение атмосферы.

«Красную книгу» и охраняются законом. С целью охраны природы создаются заповедники, микрозаповедники, природные памятники, плантации лекарственных растений, резервации, национальные парки и проводятся другие природоохранные мероприятия. В целях охраны природы в 1971 г. принята международная программа «Человек и биосфера» (по-англ. «Мап and Biosfera» — сокращенно МАВ), в рамках которой в Республике Узбекистан также разработана специальная программа. Согласно этой программе, изучаются состояние окружающей среды и воздействие человека на биосферу. Основными задачами программы «Человек и биосфера» являются прогнозирование последствий современной хозяйственной деятельности человека, разработка способов разумного использования богатств биосферы и мер по ее охране.

В странах, участвующих в программе МАВ, создаются крупные биосферные заповедники, где изучаются изменения, наступающие в экосистемах без влияния человека. На территории Центральной Азии расположены Каракумский и Сарычелекский биосферные заповедники. Заповедники создаются в целях сохранения природных объектов в их первозданном виде (рис. 80). На их территории нельзя проводить хозяйственные работы, запрещаются строительство промышленных и сельскохозяйственных предприятий, добыча полезных ископаемых, вырубка лесов, использование лугов под пастбища, рыбная ловля, применение ядовитых химических веществ. Для сохранения природных богатств создаются также заказники, где допускается частичное использование природных богатств. В ботанических заказниках нельзя косить траву, вырубать деревья, пасти скот. В охотничьих заказниках охота разрешается только в определенные сезоны и притом без ущерба для популяции животных.

Природные памятники - - это природные объекты, имеющие научно-историческое, культурное и эстетическое значение. К ним относятся такие объекты неживой природы, как водопады, гейзеры, пещеры, а также деревья-долгожители, старинные памятники, парки, природные музеи. Знаменитый дуб в Ясной Поляне, платан «Семь братьев» в Ашгабате могут быть отнесены к числу таких памятников.

Мероприятия по охране биосферы отражены в Конституции Республики Узбекистан, в постановлениях Олий Мажлиса и правительства. Каждый учащийся должен ясно представлять себе, что защита и умножение природных богатств, охрана биосферы являются общей задачей. Биосферу легко разрушить, но восстановить ее очень трудно.

Каждый человек должен четко осознавать, что сохранение природных богатств на благо будущих поколений — священный долг каждого из нас. 5 июня считается Международным днем защиты окружающей среды.



Рис. 80. Исследование атмосферы в Сарычелекском заповеднике.

#### Выводы

- 1. Биосфера оболочка Земли, населенная живыми организмами и постоянно изменяющаяся под их влиянием.
- 2. Основными функциями биосферы являются: 1) газообменная; 2) окислительно-восстановительная; 3) концентрационная; 4) биохимическая.
- 3. Общая масса живых организмов в биосфере называется биомассой, 93% которой приходится на сушу, а 7% на водную среду.
- 4. Живые организмы своей деятельностью оказывают большое влияние на биосферные процессы и обусловливают изменения биосферы.
- 5. Химические элементы, составляющие биосферу, находятся в состоянии циклического круговорота. Несмотря на то, что количество элементов биогенной миграции ограничено, она обеспечивает существование жизни и ее развитие в течение долгих лет.
- 6. В биогенной миграции участвуют организмы, образующие (продуценты), потребляющие (консументы) и расщепляющие (редуценты) органические вещества.
- 7. Биосфера непрерывно развивается. Ее развитие обусловливают такие факторы, как геологические и климатические изменения на нашей планете, воздействие живых организмов и человеческая деятельность.
- 8. Первый этап эволюции биосферы называется биогенезом, а второй ноогенезом. В настоящее время в связи с тем, что основное

влияние на биосферу оказывает человек, она носит название ноосферы.

- 9. Недопонимание человеком закономерностей развития биосферы и ее неправильное использование обусловливают экологический кризис или критическое состояние биосферы.
- 10. Каждому учащемуся необходимо сформировать экологическое мировоззрение и внести свой вклад в дело охраны природы.

#### Словарь терминов

Азотфиксация — процесс превращения различными микроорганизмами элементарного азота атмосферы в азотистые соединения.

Аммонификация — процесс расщепления белков и образования аммиака под воздействием микроорганизмов, который наблюдается после смерти организмов.

Аэропланктон — бактерии, микроорганизмы и споры, распространенные в верхней границе биосферы.

Бентос — организмы, обитающие в донных водах.

Биогенез - этап эволюции биосферы, протекающий на основе биологических закономерностей, без участия человека.

Биогенные вещества -- вещества, образовавшиеся в результате деятельности живых веществ в составе биосферы.

Биогенная миграция периодическое повторение процессов накопления веществ в живых организмах и последующего их распада.

Биогеохимический цикл - продолжительность одного полного круговорота химических элементов в природе.

Биосфера — оболочка Земли, где распространены живые организмы.

Генофонд вида - - комплекс генов и генотипов всех организмов, относящихся к определенному виду.

Живое вещество — совокупность ж и в ы х веществ в биосфере.

Заповедник — экосистема, в которой полностью запрещена хозяйственная деятельность человека.

Микропланктон - - организмы, распространенные в верхних слоях океанических и морских вод (одноклеточные водоросли, микроорганизмы).

Национальные парки — природные территории, имеющие экологическое и историческое значение, которые запрещается использовать в промышленных и сельскохозяйственных целях и можно использовать как место для отдыха людей.

Ноогенез — этап эволюции биосферы, связанный с происхождением и развитием человеческого общества.

Ноогеника — наука, которая занимается разработкой мероприятий по предупреждению экологического кризиса в биосфере в условиях научнотехнического прогресса.

Ноосфера - - биосфера, развивающаяся и изменяющаяся под воздействием сознательного труда и научной деятельности человека.

Природные памятники — редкие природные объекты, имеющие научное, историческое, культурное и эстетическое значение.

# СОДЕРЖАНИЕ

| Введение                                                       | 3   |
|----------------------------------------------------------------|-----|
| Глава І. Генетическая инженерия и биотехнология                |     |
| § 1. Понятие о генетической инженерии                          | 8   |
| §2. Блуждающие генетические элементы                           | 16  |
| § 3. Получение рекомбинантной ДНК. Клонирование генов          | 20  |
| § 4. Изменение наследственности животных методом               |     |
| клеточной инженерии. Получение гибридом                        | 24  |
| § 5. Достижения генетической инженерии и биотехнологии         |     |
| в Узбекистане. Перспективы биотехнологии                       | 28  |
| Глава П. Эволюционное учение                                   |     |
| § 6. Возникновение эволюционных представлений                  | 36  |
| § 7. Естественнонаучные и общественно-экономические основы     |     |
| эволюционного учения                                           | 43  |
| § 8. Сущность учения Дарвина                                   | 49  |
| § 9. Экскурсия в животноводческие и птицеводческие хозяйства   | 56  |
| § 10. Борьба за существование и естественный отбор             | 57  |
| §11. Экскурсия по ознакомлению с борьбой за существование в    |     |
| природе                                                        | 66  |
| § 12. Приспособленность организмов и ее относительность        | 68  |
| § 13. Вид — основной этап эволюции                             | 77  |
| § 14. Лабораторное занятие. Ознакомление с морфологическими    |     |
| критериями вида                                                | 84  |
| § 15. Синтетическая теория эволюции                            | 85  |
| Глава III. Доказательства эволюции                             |     |
| § 16. Молекулярно-биологические доказательства эволюции        | 95  |
| § 17. Эмбриологические, сравнительно-анатомические и           |     |
| палеонтологические доказательства эволюции                     | 98  |
| § 18. Биогеографические доказательства эволюции                | 105 |
| Глава IV. Происхождение и историческое развитие жизни на Земле |     |
| § 19. Понятие «жизнь». Основные теории о происхождении жизни   | 115 |
| § 20. Содержание теории биохимической эволюции жизни на Земле  | 120 |
| §21. Главные направления эволюционного процесса                | 126 |
| § 22. Лабораторное занятие. Изучение идиоадаптации у растений  | 131 |
| § 23. Жизнь в архейской, протерозойской и палеозойской эрах    | 133 |
| 8 24. Жизиц в мазозойской и койнозойской овох                  | 127 |

### Глава V. Основы экологии

| 145<br>150<br>156 |
|-------------------|
| 156               |
|                   |
|                   |
| 1/0               |
| 160               |
| 163               |
| 167               |
|                   |
| 171               |
| 178               |
| 184               |
|                   |
| 192               |
|                   |
| 198               |
| 203               |
| 207               |
| 1                 |